Impacts of agrisolar co-location on the food–energy–water nexus and economic security

Nature Sustainability volume 8, pages 702–713 (2025)

Abstract

Understanding how solar PV installations affect the landscape and its critical resources is crucial to achieve sustainable net-zero energy production. To enhance this understanding, we investigate the consequences of converting agricultural fields to solar photovoltaic installations, which we refer to as ‘agrisolar’ co-location. We present a food, energy, water and economic impact analysis of agricultural output offset by agrisolar co-location for 925 arrays (2.53 GWp covering 3,930 ha) spanning the California Central Valley. We find that agrisolar co-location displaces food production but increases economic security and water sustainability for farmers. Given the unprecedented pace of solar PV expansion globally, these results highlight the need for a deeper understanding of the multifaceted outcomes of agricultural and solar PV co-location decisions.

Main

Climate change threatens our finite food, energy and water (FEW) resources. To address these threats by transitioning towards net-zero carbon emissions energy systems, new energy installations should be designed while considering effects on the complete FEW nexus. The rapid expansion of solar photovoltaic (PV) electricity generation is a key part of the solution that will need to grow more than tenfold in the United States (US) by 2050 to meet net-zero goals1. However, solar PV expansion presents threats to agricultural production due to its land-use intensity and potential in croplands2. A considerable portion of ground-mounted solar PV facilities in the US are installed in agricultural settings3,4,5. Yet regions with high solar breakthrough, such as the California Central Valley (CCV), are often among the most valuable and productive agricultural land in the US3,5,6. It is not yet clear how the current solar PV landscape affects agricultural security, much less under 2050 net-zero expansion. Here we quantify both the agricultural offsets of solar PV land-use change and the decision-making processes behind these transitions for existing solar PV arrays in agriculture.

Competition between solar PV and agricultural land uses has led to various co-location methods where installations are sited, designed and managed to optimize landscape productivity across a wide range of ecological and anthropogenic services7. This approach differs from conventional solar PV deployment, which is often installed and managed primarily for electricity output and reduced maintenance7. Emerging concepts such as techno-ecological synergies (TES)8 and more recently, ecovoltaics7, encompass a wide range of co-location strategies enabling renewable energy installations to serve multiple productive ecosystem services. Agricultural production and solar PV can be laterally integrated (agrisolar co-location)9 or directly share land and photons via vertical integration (agrivoltaic co-location)10,11.

Agrivoltaic co-location involves the direct integration of solar and agriculture (crops or grazing) or ecosystem services (pollinator habitat, native vegetation) within the boundaries of solar infrastructure11. The earliest technical standardization, originating from Germany, specifies that this can occur under or between system rows, but not adjacent to, while agricultural yield losses are reduced to less than one-third of reference (without solar PV) yields10. Effective agrivoltaic management can improve agricultural yield, microclimate regulation, soil moisture retention, nutrient cycling and farmer profitability, while enhancing public acceptance12,13,14,15. Thus, agrivoltaic co-location can address the agricultural competition concerns created by solar PV expansion.

The term agrisolar is more broadly defined (modified from SolarPower Europe9), as the integration and co-management of solar photovoltaics, agriculture and ecosystem services within agroenergy landscapes, explicitly considering the trade-offs and co-benefits of agricultural, environmental and socio-economic objectives. Thus defined, agrisolar practices align with TES and ecovoltaic principles and encompass both coincident (‘agrivoltaic co-location’) and adjacent co-location where agricultural land is replaced (hereafter ‘agrisolar co-location’)11,16. However, replacing agricultural land with solar PV (‘adjacent agrisolar’) without implementing agrivoltaic management has historically been considered conventional solar and thus excluded from co-location research because agricultural production is ceased on site10. There is some evidence, however, that converting portions of agricultural fields to solar PV in water-stressed regions can also provide water and economic benefits that enhance agricultural security despite food production losses17,18. Adjacent agrisolar replacement appears to be the dominant practice, with recent work showing that there have been relatively few documented agrivoltaic installations compared to total solar PV deployment in agriculture in the CCV5,19. Because agrisolar practices are understudied relative to literature on other forms of co-location14,20, there is a need to assess regional resource outcomes for most existing solar PV installations and consequences for lost food production without agrivoltaic management. Conceptual examples of solar PV co-location are shown in Fig. 1.

figure 1
Fig. 1: Conceptual diagram of trade-offs and co-benefits with agrisolar, agrivoltaic and ecovoltaic co-location.

We argue that by enhancing water, energy and economic security, transitioning farm fields to solar PV installations can be considered adjacent agrisolar management in water-stressed regions. Here security is the capacity of a farmer to maintain or improve their financial well-being, operational resilience and access to essential resources, such as water and energy, while preserving the integrity and future of their agricultural practices. We assess the FEW security effects of these agrisolar PV installations across the CCV through 2018 and estimate the economic potential of those arrays throughout a 25-year operational-phase lifespan. We compute landowner cash flow including net energy metering (NEM) for commercial-scale PV installations and land leases for larger utility-scale arrays. All resource and economic effects are referenced to a counterfactual business-as-usual scenario with no solar PV installation, assuming continued agricultural production and operation on the same plot of land. The purpose of this analysis is to evaluate the lifespan FEW and economic impacts of existing agrisolar arrays in the CCV. Rather than projecting future installations or policies, we report on the existing agrisolar placement, design and policy practices to inform future practices on a per-hectare basis, tailored to regional needs. We also highlight the need for, and opportunities within, additional research into agrisolar practices.

Results

Commercial- and utility-scale agrisolar arrays in CCV

We assembled a comprehensive dataset of agriculturally co-located solar PV installations within the CCV through 2018. We identified 925 solar PV arrays installed between 2008 and 2018, with an estimated capacity of 2,524 MWp on 3,930 ha of recently converted agricultural land. The estimated array capacity of each individual array ranged from 19 kWp to 97 MWp. A temporal synthesis of the input solar PV dataset, separated by array scale, is shown in Fig. 2b,c. The smaller commercial-scale arrays are roughly twice as common, yet account for one-tenth of the installed capacity and converted land area of utility-scale arrays. Note that commercial-scale arrays are predominantly fixed axis, whereas utility-scale arrays are more frequently single-axis tracking systems. There are also notable peaks in the number of installations for both array scales in 2016, potentially in response to the NEM 2.0 legislation timeline21. While there is some spatial clustering of converted crop types (Fig. 2a), converted crops were widely distributed across the CCV.

figure 2
Fig. 2: Study area and characterization of ground-mounted agrisolar PV installations.

Offset food and nutritional production

The 925 agriculturally co-located arrays displaced 3,930 ha of cropland, which is ~0.10% of the CCV active agricultural land22. In the baseline scenario (Methods provide scenario details), nutritional loss was 0.16 trillion kcal (Tkcal) and 1.41 Tkcal foregone by commercial- and utility-scale arrays, respectively (Fig. 3). The total, 1.57 Tkcal, is equivalent to the caloric intake of ~86,000 people for 25 years (solar lifespan), assuming a 2,000 kcal d–1 diet. The nutritional footprint of commercial-scale arrays (−21.2 million kcal (Mkcal) ha–1 yr–1) was greater than utility-scale arrays (−15.6 Mkcal ha–1 yr–1) and the total impact was primarily composed of grain (58%), orchard crops (21%) and vegetables (10%). Utility-scale arrays displaced the nutritional value of grain (60%) hay/pasture (16%) and vegetables (10%). Note that for displaced kcal production of hay/pasture, contribution was negligible despite dominating the converted area due to inefficient caloric conversion to human nutrition for feed and silage crops. Resource footprint, total lifespan impact and crop contribution is shown in Fig. 3. Cumulative resource impacts across the region through time are available in Supplementary Fig. 1.

figure 3
Fig. 3: Lifespan land use, food loss, electricity production and potential irrigation electricity offset and potential water conservation with agrisolar co-location in California’s Central Valley.

Electricity production and consumption

We modelled the annual electricity generation for each array and offset irrigation electricity demand. Total cumulative electricity generation for these identified arrays by 2042 was projected to be 10 TWh for commercial-scale arrays and 113 TWh for utility-scale arrays. The potential electricity saved by not irrigating converted land was 11 GWh and 146 GWh for commercial- and utility-scale arrays, respectively. Note that this was three orders of magnitude less than the total electricity generation. For reference, the total lifespan impact of electricity production and potential irrigation electricity offset ( ~ 124 TWh) could power ~466,000 US households for 25 years (assuming 10.6 MWh yr–1 per household).

Changes in water use

Most (74%) agriculturally co-located arrays in the CCV replaced irrigated croplands. On the basis of the business-as-usual change in total water-use budget (considering irrigation water-use offset and operation and maintenance—O&M water use), we estimate that agrisolar co-location in the region would reduce water use by 5.46 thousand m3 ha–1 yr–1 (total: 42.1 million m3) and 6.02 thousand m3 ha–1 yr–1 (total: 544 million m3) over the 25-year period for commercial- and utility-scale arrays, respectively. This could supply ~27 million people with drinking water (assuming 2.4 liters per person per day) or irrigate 3,000 hectares of orchards for 25 years. O&M water use on previously irrigated land was ~eight times less than irrigated crops—if offset irrigation water were conserved rather than redistributed. Irrigated crops that contributed the most to the offset irrigation water use were orchards (29%), hay/pasture (28%) and grain (27%) for commercial-scale installations and grain (37%), hay/pasture 31%), cotton (15%) for utility-scale installations.

Agricultural landowner cash flow

Adjacent agrisolar co-location is more profitable than the baseline agriculture-only scenario, regardless of how landowners are compensated (Fig. 4). For commercial-scale arrays, agrisolar landowners experience early losses from installation expenditure (−US$53,000 ha–1 yr–1). However, the lifespan cash flow was dominated by NEM, offset electricity costs and surplus generation sold back to the grid, resulting in a net positive economic footprint of US$124,000 ha–1 yr–1, 25 times greater returns than lost food revenue (−US$4,920 ha–1 yr–1). The resulting economic payback period was 5.2 years (best- and worst-case payback in 2.9 and 8.9 years respectively; Supplementary Fig. 2).

figure 4
Fig. 4: Lifespan economic footprint of commercial- and utility-scale agrisolar co-location.

The net economic footprint for utility-scale agrisolar landowners (US$2,690 ha–1 yr–1) was 46 times less than the commercial-scale footprint (Fig. 4b). In contrast to commercial-scale arrays, utility-scale agrisolar landowners were not responsible for installation or O&M costs but still lost food revenue (−US$3,330 ha–1 yr–1) and were only compensated by land lease (US$1,940 ha–1 yr–1) and offset operational (US$3,830 ha–1 yr–1) and irrigation water-use costs (US$220 ha–1 yr–1). In the worst-case scenario, the total budget was negative (−US$432 ha–1 yr–1), suggesting that some landowners could lose revenue. There was no payback period for utility-scale agrisolar landowners because the net economic budget was always positive (baseline and best-case scenario) or always negative (worst-case scenario). Cumulative economic impacts across the region in Supplementary Fig. 3.

On average, estimated foregone farm operation costs exceeded forgone food revenue (Fig. 4). While this may be affected by reporting differences in agricultural revenue and farm operation cost sources, agricultural margins are known to be small, or negative, for certain croplands (for example, pastureland), with margins likely to decrease further under future climate change and water availability scenarios23. For commercial-scale installations, cutting farm operation costs in half (highly conservative) resulted in a longer economic payback period of just a month. Cutting offset farm operation costs in half for utility-scale installations did not affect economic payback or the always-positive baseline and best-case budget.

Discussion

The effect of agrisolar co-location on food production

We found that displacing agricultural land with solar PV locally reduced crop production ( ~ 1.57 Tkcal), which may affect county- and state-level food flows. Fortunately, on national and global scales, food production occurs within a market where reduced production in one location creates price signals that can stimulate production elsewhere. For example, high demand and increased irrigation pumping costs in the CCV have resulted in higher prices received for specialty orchard crops. Thus, farmers have elected to switch from cereal and grain crops to specialty crops24. Solar PV is also far more energy dense per unit of land than growing crops to produce biofuels18—a practice common across large swaths of agricultural farmland in the US and elsewhere. We show that conversion of feed, silage and biofuel croplands provides high irrigation water-use offsets while minimizing nutritional impacts due to the low or non-existent caloric conversion efficiencies of these crops (Fig. 3). Though, considering food waste and a lack of crop-specific nutritional-quality knowledge, we cannot evaluate end-point impacts of reported foregone kcal (calories) on human diets and health25.

California produces 99% of many of the nation’s specialty fruit and nut orchard crops (for example, almonds, walnuts, peaches, olives)26. Fields producing these crops were commonly converted to solar PV (270 ha of orchard crops), and it may be difficult to shift production of these crops to other locations due to their intensive water footprint, climate sensitivity and time to production27,28. Altering global supply of these crops could lead to food price increases similar to biofuel land-use changes29 with agricultural markets taking time to compensate30. We found that these nutritionally dense, valuable and operationally costly crops are more commonly replaced by commercial-scale rather than utility-scale installations, resulting in a higher nutritional footprint at the site scale (Fig. 3). However, due to their smaller arrays size (Fig. 2), these arrays have a lower regional lifespan nutritional impact. The total solar PV area we consider (the area covered by panels and space between them) does not account for total cropland transformation by all solar energy infrastructure. Thus, total cropland area converted and associated caloric losses may be underestimated by up to 25%. We conducted a sensitivity analysis on this potential area bias for all area-based metrics and discuss the details of this underestimate in Supplementary Discussion.

Global food needs are projected to double by 205031,32. To meet these needs, yield per unit area must increase, agricultural land area under production must increase and/or food waste and inefficiency must be reduced. Reducing waste is feasible but requires a considerable change in dietary preferences33 and supply chain pathways34. Yield increases alone are unlikely to meet these needs31 and half of global habitable land is already agricultural35. Cultivated lands are facing additional pressures due to soil quality deterioration, aridification, water availability, urban growth and threats to global biodiversity that will be exacerbated under a changing climate36,37,38,39. Given these pressures on arable land, cropland selection for future agrisolar co-location, both commercial- and utility-scale, should be assessed at local, regional, national and international scales to maintain food availability and security.

Water security potential with agrisolar co-location

Here we show that solar PV installations preferentially displace irrigated land in the CCV (3,310 ha and 74% of co-located installations). Displacing this irrigated cropland enhances farmer cash flow while probably reducing overall water use by 5.46 and 6.02 thousand m3 ha–1 yr–1 for commercial- and utility-scale arrays, respectively. The total displaced irrigation water use was eight times the O&M use for those arrays. Thus, installing solar PV in water-scarce regions has substantial potential to reduce water use, which bolsters findings from previous studies17,18,40,41. This analysis does not incorporate the additional hydrologic effects of modifying surface energy and water budgets, including reducing evapotranspiration and the potential for increased groundwater recharge42,43.

Given that the cash flow benefits from utility-scale agrisolar co-location are relatively small, we evaluated how water-use limitations may be a factor in farmland conversion decisions. We hypothesize that fallowing land is largely a consequence of water shortages in the CCV24,40, thus fallowing land proximal to an array (within 100 metres) may indicate an emergent agrisolar practice: intentional fallowing and irrigation water-use offset adjacent to arrays supported by revenue from the array. Each array was coded by the adjacent crop type before and post installation of the array. While we cannot know what landowners would have done with the array acreage absent the installation, this analysis provides evidence of broader land-use trends that might have been driving decisions. The transition of array acreage from before proximal post-installation land use for utility-scale arrays is displayed in Fig. 5.

figure 5
Fig. 5: Land-use change adjacent to utility-scale solar PV installations on previously irrigated cropland in the CCV.

Understanding how economic incentives affect the replacement of valuable cropland with solar PV is essential to inform future energy landscape models and policies. Here we examined the transition to post-solar installation fallowing in adjacent irrigated cropland (Fig. 5). We observed fallowing of adjacent irrigated cropland at 58 utility-scale installations totalling 658 MWp and 968 ha (27% of utility-scale area) composed of 410 ha of grain, 250 ha of hay and pasture, 225 of orchards, grapes and vegetables and 82 ha of cotton and other crops. The direct area of these arrays (968 ha) can be linked to a potential irrigation water-use offset of 195 million m3 over 25 years. If these arrays were on-farm plots of average size, 14,000 ha of fallowed land adjacent to these 58 arrays could displace an additional 120 million m3 of irrigation water use, each year, or 3,000 million m3 over 25 years (Supplementary Methods). Thus, if landowners choose to fallow farmland adjacent to leased land for utility-scale arrays, the water-use reductions are greatly amplified. We discuss several important limitations44 of the Cropland Data Layer (CDL) regarding this analysis in Supplementary Discussion.

Intensely irrigated cropland in the CCV is vulnerable to drought, especially in southern basins that rely heavily on surface-water deliveries due to limited groundwater availability45. The California Budget Act of 2021 provides financial support for fallowing to motivate farmers to reduce water use46. Whereas fallowing land can help mitigate some hydrological problems, removing production can also result in large agricultural revenue losses47. Converting land with solar electricity production, rather than simply fallowing could reduce risks to farmers while enhancing financial security17, especially during periods of extreme drought40. Whereas this has implications for future installations, we show that farmers already appear to be practicing solar fallowing, probably resulting in long-term irrigation water-use reductions.

We acknowledge the potential issues in assuming that foregone irrigation water use due to solar PV installations was conserved rather than redistributed. However, a portion of this potential offset is probably real given three observations: (1) utility-scale installations correlate with newly fallowed land, which was not observed for commercial-scale arrays; (2) the 2014 Sustainable Groundwater Management Act (SGMA)48 requires water-use reductions by the 2040s and (3) agriculturally co-located solar PV maintains Williamston Act Status under the Solar-Use Easement49 (which has recently been revived50), a California tax incentive common in irrigated lands highly suitable for solar51. In our dataset, 46% of utility-scale installations and 58% of commercial-scale installations were completed after SGMA was enacted (Fig. 2b,c). We also performed a sensitivity analysis where only 50% of irrigation water-use offset was conserved rather than redistributed, which still resulted in an estimated US$9 million and 246 million m3 conserved due to the regional change in water use from just direct area converted (Supplementary Discussion).

Given this potential for water-use offset, solar fallowing for water-use reduction presents an opportunity for incentivized solutions that are already of interest to landowning farmers in the region17. With suitable solar area in the CCV exceeding projected fallowing acreage to comply with SGMA51, implementing agrisolar co-location policies and incentives such as these could promote complementary land uses and enhance public support15.

Achieving economic security across return structures

Regardless of scale and related financial benefits, farmers are switching away from cultivating crops to cultivating electricity. This study empirically demonstrates that both NEM and land-lease incentive structures have been viable frameworks for PV deployment in some of the most valuable cropland in the US6. Critically, we incorporate farm-specific agricultural dynamics across a region (offset farm operation costs, irrigation costs and food revenue) into economic considerations for replacing cropland with solar.

By including these revenues and costs, this study clearly demonstrates the strong economic incentives to replace cropland with commercial-scale arrays (Fig. 4a). Under the grandfathered NEM 1.0 and 2.0 agreements, commercial-scale agrisolar landowners enhanced financial security by 25 times lost food revenue over the lifetime of the array, while simultaneously reducing water use. The resulting total net revenue, US$124,000 ha–1 yr–1, is potentially underestimated because post-lifespan module replacement, resale or continued use is likely, and property values could increase (terminal value) compared to the reference scenario. We also have not considered several programmes, credits and incentives (for example, Rural Energy for America Program) that could enhance net revenue (Supplementary Discussion). However, these returns are not unlimited due to NEM capacity limitations (<1 MWp) and requirements to size the installation below annual on-farm load21.

Renewable energy policy evolves quickly, shifting incentives for new customer generators. Whereas climate change and decreasing water availability in the coming decades23 will probably increase financial motivation to install solar in agriculture, future adoption and the co-benefits reported here will also depend on new business models for grid pricing52. Pricing structures have already and will inevitably continue to change as utilities, regulators and grid customers adapt to distributed renewable generation, avoid curtailment and avoid the utility death spiral52. Although future installations and policy are not the focus of this study, the newest policy, NEM 3.0, substantially reduces compensation for surplus generation and limits options for multiple metered connections53, probably requiring future installations to add battery storage and other measures to maintain similar profitability54. However, this study considers solar arrays that are grandfathered into their respective NEM 1.0 and 2.0 agreements. Additionally, our estimated load contributions suggest that revenue reported here mostly originates from offset demand rather than credit for surplus generation (Supplementary Notes and Supplementary Discussion). The bottom line is that owning solar PV, offsetting annual on-farm electric load and selling surplus electricity back to the utility under NEM 1.0 and 2.0 has increased economic and energy security for farmers with existing arrays and has probably promoted water-use reductions in the region. Importantly, we also assumed that all decisions were made by and returns received by landowning or partial-owning farmers. We do not have access to land-ownership data for the CCV, but nearly 40% of agricultural land in the region is rented or leased55.

Utility-scale land-lease rates alone do not offset lost agricultural revenue. However, including offset farm operation costs results in a substantially lower but still profitable agrisolar economic footprint with no major up-front capital investment (Fig. 4b). In water-scarce regions, particularly where water-use reduction is required, the smaller returns from utility-scale agrisolar practices and potentially related fallowing of land may be more attractive than continued cultivation under water-supply uncertainty17. Thus, without profitable compensation, agrivoltaic practices may not be feasible if offset operational costs and water-use reductions are driving utility-scale agrisolar decision making. We also omit some agricultural dynamics (such as the environmental benefits of carbon reduction), which could reinforce resource and economic security for both commercial- and utility-scale installation (Supplementary Discussion).

Opportunities for agrisolar research

Whereas funding and incentives for co-location research have expanded rapidly in recent years, we advocate extending these to agrisolar co-location. Adjacent agrisolar replacement with barren or unused ground cover still falls short of the full potential of ecovoltaic and agrivoltaic multifunctionality7,9,10,11. However, the regional resource and economic co-benefits of replacing irrigated land in water-stressed regions with solar PV here cannot be ignored. These findings are also immediately relevant to the Protecting Future Farmland Act of 202356, which set out a goal to better understand the multifaceted impacts of installed solar on US agricultural land. We discuss additional placement and management decisions that fall under the umbrella of agrisolar co-location in Supplementary Discussion.

We have shown that the goal of co-location, to enhance synergies between the co-production of agriculture and/or other ecosystem services and net-zero electricity production, is at least partially achievable with agrisolar co-location. Broader agrisolar research may also expose the consequences of not widely adopting agrivoltaics to retain agricultural production and protect food security. Given the ecosystem service benefits reported here, there may be an opportunity to broaden the scope of co-location research and incentives to include agrisolar co-location practices defined here.

Methods

Identifying agrisolar PV arrays across the CCV

We used remotely sensed imagery of existing solar PV arrays and geographic information system (GIS) datasets to develop a comprehensive and publicly available dataset of ground-mounted arrays co-located with agriculture in the CCV through 2018. We extracted all existing non-residential arrays from two geodatabases (Kruitwagen et al.4,57 and Stid et al.5,58) within the bounds of the CCV alluvial boundary59. We removed duplicate arrays and applied temporal segmentation methods described in Stid et al.5 to assign an installation year for Kruitwagen et al.4 arrays. We acquired Kruitwagen et al.4 panel area within array bounds by National Agriculture Imagery Program imagery pixel area with solar PV spectral index ranges suggested in Stid et al.5 and removed commissions (reported array shapes with no panels). We then removed arrays with >70% overlap with building footprints60 to retain only ground-mounted installations. Finally, overlaying historical CDL crop maps with new array shapes, we removed arrays in areas with majority non-agricultural land cover the year before installation (Supplementary Fig. 4 and Supplementary Discussion).

The resulting dataset (925 agrisolar co-located arrays) included 686 ground-mounted arrays from Stid et al.5 plus 239 from Kruitwagen et al.4. For these sites, we calculated array peak capacity (kWp) by61:

(1)

where  is the total direct area of PV panels in m2,  is the average efficiency of installed PV modules during the array installation year62 (Supplementary Fig. 5) and  is the irradiance at standard test conditions (kW m–2). Arrays were split into ‘Commercial-’ (<1 MWp) and ‘Utility-’ (≥1 MWp) scale arrays following the California Public Utility Commission NEM capacity guidelines63.

Scenario summary and assumptions

We computed annual FEW resource and economic values for each ground-mounted agrisolar PV array identified across the CCV for four scenarios: (1) reference, business as usual with no solar PV installation and continued agricultural production on the same plot of land, (2) baseline, agrisolar PV installation with moderate assumptions related to each component of the analysis, (3) worst case, PV installation with high negative and low positive effects for each component, (4) best case, similar but opposite of the worst-case scenario. We compare baseline to the reference scenario to estimate the most likely FEW and economic effects and use the differences between best- and worst-case scenarios to estimate uncertainty. Supplementary Tables 2 and 3 provide an overview of scenarios for each resource and Supplementary Tables 4 and 5 for baseline agrisolar lifespan FEW resource and economic value outcomes, respectively.

Identified arrays were installed between 2008 and 2018 and were assumed to have a 25-year lifespan for arrays due to performance, warranties, module degradation and standards for electrical equipment64,65. We assumed that land-use change effects ceased following 25 years of operation to simplify assumptions about module replacement, resale or continued use. We then summarized the FEW and economic effects of all arrays across the CCV and divided our temporal analysis into three phases: (1) addition (2008–2018) where arrays were arrays were being installed across the CCV, (2) constant (2019–2032) with no array additions but all arrays installed by 2018 are operating and maintained and (3) removal (2032–2042), where arrays are removed after 25 years of operation.

We performed several sensitivity analyses to address limitations in the available data and methods and to show how changes in future policy (NEM) could affect incentives displayed here. Sensitivity analysis included the capacity cut-off between commercial- and utility-scale (5 MW), solar PV lifespan (15 and 50 years), nominal discount rate (3%, 7% and 10%), solar PV direct area bias (proportional direct to total infrastructure area and a uniform perimeter buffer) and irrigation redistribution (assuming 50% of irrigation water-use offset is redistributed rather than conserved), all else equal (Supplementary Discussion and Supplementary Tables 620). We discuss additional assumptions and limitations in Supplementary Discussion.

Displaced crop and food production

Replacing fields (or portions thereof) with solar PV arrays affects crop production by (1) lost production of food, fibre and fuels and (2) reduced revenue from crop sales. We simplify the complex effects of lost production and include solely the foregone calories through both direct and indirect human consumption, which is justified because CCV crop production is largely oriented towards food crops. Future analyses could evaluate the lost fibre (primarily via cotton) or fuel (via biofuel refining) production.

We evaluated the economic and food production effects of displaced crops through a crop-specific opportunity cost assessment of land-use change, incorporating actual reported; yields, revenue, caloric density and regionally constrained caloric conversion efficiencies for feed/silage and seed oil crops. All crop type information was derived from the USDA National Agricultural Statistics Service (NASS) CDL22 for the array area in both prior- and post-installation years (Supplementary Fig. 4 and Supplementary Methods provide the adjacent fallowed land analysis). Each array was assigned a majority previous crop from the spatially weighted means of crop types within the array area for the five years before the installation.

We converted all eligible crop types to kcal (also called calorie) for human consumption after Heller et al.25. Foregone food production ( in kcal) following PV installation was then defined for each array as:

(2)

where  is in kcal kg–1,  is in kg m–2 and  of each array in m2. Crop-specific caloric density data (kcal kg–1) were derived from the USDA FoodData Central April 2022 release66. FoodData food descriptions and nutrient data were joined and CDL specific crop groupings were made through a workflow described in Supplementary Fig. 6. Crop-specific yield data (kg m–2) were derived from the USDA NASS Agricultural Yield Surveys67. State-level (California) yield data were processed similarly, with missing crop data filled based on national average yields. We used caloric conversion efficiencies for feed, silage or oil crop to account for crop production that humans do not directly consume.

For each array, we calculated annual revenue of forgone crop production in real (inflation adjusted) dollars, calculated by:

(3)

where  is in US$ kg–1,  is in kg m–2 and  of each array in m2. We used the annual ‘price received’ for all crops in the USDA NASS Monthly Agricultural Prices Report for 2008 through 201868. For the baseline case, we assumed that food prices will scale directly with electricity prices through 2042 given that they respond to similar inflationary forces69. Supplementary Fig. 6 and Supplementary Methods provide a more complete workflow including best- and worst-case scenario assumptions.

Change in irrigation water use and cost savings

Irrigation water use can only be offset by agrisolar co-location if the prior land use was irrigated. The presence of irrigation was inferred from the Landsat-based Irrigation Dataset (LanID) map for the year before installation70,71 (Supplementary Fig. 4). If the array area contained irrigated pixels, then we assumed the cropland area and all respective crops within the rotation were irrigated.

We calculated the total forgone irrigation water use ( in m3) by:

(4)

where  in m is the crop-specific irrigation depth,  in m3 is the annual county-level irrigation water-use estimate and  in m3 is the county-level irrigation water-use estimate for the respective survey year irrigation depths.

We estimated annual crop-specific county-level irrigated depths from survey and climate datasets for each array. Crop-specific irrigation depths () were taken from the 2013 USDA Farm and Ranch Survey72 and 2018 Irrigation and Water Management Survey73, and logical crop groupings were applied (for example, almonds, pistachios, pecans, oranges and peaches were considered orchard crops). Because irrigation depths depend on the total precipitation in each survey year, we used multilinear regression to build annual county-level irrigation water-use estimates () from five-year US Geological Survey (USGS) water use74, gridMET growing season average precipitation75, with year as a dummy variable to incorporate temporal changes in irrigation technologies and practices. For the installation phase (2008 to 2018), these depths varied based on historical climate and survey data, whereas the projection phases (constant and removal) used a scenario-dependent moderate, wet (worst-case, least water savings) or dry (best case, most water savings) year estimate from the historical record (discussed in Supplementary Methods).

Assigning an economic value to water use is difficult and varies based on the temporally changing supply and demand76. We calculated the economic value of the change in water use (Water in real US$) to the farmer by:

(5)

where  (m3) is the offset irrigation water use for the co-located crop minus O&M projected water use,  (MWh m–3) is the irrigation electricity required to irrigate the co-located crop given local depth to water and drawdown estimates from McCarthy et al.77,  (US$ MWh–1) is the utility-specific (commercial-scale) or regional average (utility-scale) annual price of electricity based on the electricity returns and modelled electricity generation described in Supplementary Methods and  is a CCV-wide average water right contract rate of ~ US$0.03 m–3 (ref. 78). Here we assume that water (and thus energy) otherwise used for irrigation was truly foregone and not redistributed elsewhere within or outside the farm. Change in O&M water use was based on Klise et al.79 reported values, described in Supplementary Methods.

Electricity production, offset and revenue

Installing solar PV in fields has three benefits: (1) production of electricity by the newly installed solar PV array, (2) reduction in energy demand due to reduced water use and field activities and (3) revenue generation via net energy metering (NEM) or land lease. Here we assume that on-farm electricity demand is dominated by electricity used for irrigation and ignore offset energy (embodied) used for fuel.

We modelled electricity generation for each array using the pvlib python module developed by SANDIA National Laboratory80. Weather file inputs for pvlib were downloaded from the National Renewable Energy Laboratory (NREL) National Solar Radiation Database81. We also estimated annual on-farm load to differentiate offset electricity use and surplus generation. Not only is electricity generated by the arrays, but electricity consumption is foregone for each array due to not irrigating the array area. The annual change in electricity consumption due to water use ( in GWh) is calculated by:

(6)

where  is the county-level rates for irrigation electricity demand in GWh m–3 and  is the change in water use in m3 from equation (5). County-level electricity requirements to irrigate were calculated using irrigation electricity demand methods described in McCarthy et al.77 modified with a CCV-specific depth to water (piezometric surface) product for the spring (pre-growing season) of 201882.

Revenue from electricity generation was calculated separately for each array depending on array size and the installation year. Commercial-scale arrays (<1 MW) were assumed to operate under an NEM 1.0 if installed before 2017 and NEM 2.0 if installed later, which allows for interconnection to offset on-farm load and compensation for surplus electricity generation (Supplementary Methods and Supplementary Table 21). Thus, for commercial-scale arrays, annual cash flow from solar PV (NEM in US$) is calculated as:

(7)

where  is real US$ saved by offsetting annual on-farm electric load and  is real US$ earned by surplus PV electricity generation sold to the utility under NEM guidelines. Both  and  are estimated based on pvlib modelled electricity generation and valued at the historical utility-specific energy charge retail rates. Historical energy charges are available either through utility reports83,84,85 or the US Utility Rate Database via OpenEI86. We made several assumptions that resulted in omission of fixed charges including transmission and interconnection costs from the analysis. Details about electricity rates and omitted charges are summarized in Supplementary Methods.

For utility-scale arrays (≥1 MW), annual revenue from agrisolar co-location (Lease in US$) was assumed to be given by:

(8)

where Lease is the economic value estimated to be paid to the farmer by the utility for leasing their land in US$ m–2 and Area of each array in m2.

We assumed commercial-scale arrays installed before 2017 were grandfathered into NEM 1.0 guidelines for the duration of their lifespan. However, arrays installed in 2017 and 2018 fall under NEM 2.0 guidelines which include a US$0.03 kWh–1 non-bypassable charge removed from 21,87,88. Annual on-farm operational load was estimated and distributed across the year based on reported California agricultural contingency profiles89 and Census of Agriculture county-level average farm sizes90,91,92 (Supplementary Figs. 7 and 8 and Supplementary Methods). With distributed hourly load estimations and modelled solar PV electricity generation, we delineated electricity and revenue contributing to annual load () from surplus electricity and revenue that would have been sold back to the grid and credited via NEM ().

Future electricity revenue was projected using 2018 conditions (contribution to annual load, to surplus) and energy charge rates, modelled electricity production described above (includes degradation, pre-inverter, inverter efficiency and soiling losses) and projected changes in the price of electricity. The Annual Energy Outlook report by the US Energy Information Administration (EIA) provides real electricity price projections annually between 2018 and 2050 for ‘Commercial End-Use Price’93. This annual rate of change was used to estimate projected deviations from 2018 energy charges (2018 US$ kWh–1) during the constant and removal phases (2019–2042), with projected solar PV generation including discussed losses.

We used solar land consultant and industry reports for solar land-lease () rates that ranged from US$750 ha–1 yr–1 to US$4,950 ha–1 yr–1, with high-value land averaging IS$2,450 ha–1 yr–1 in the CCV94,95. Comparable lease rates (~US$2,500 to US$5,000 ha–1 yr–1) were reported by developers in the CCV region17 and used in a solar PV and biomass trade-off study in Germany18 (~US$1,000 to US$2,950 ha–1 yr–1).

Array installation and O&M costs

Historical installation costs (Installation) were taken from the commercial-scale PV installation prices reported in the Annual Tracking the Sun report where reported prices are those paid by the PV system owner before incentives62. The baseline scenario is the median installation price, whereas the best- and worst-case scenarios are the 20th and 80th percentile installation costs, respectively. These reported values are calculated using NREL’s bottom-up cost model and are national averages using average values across all states. Installation cost was not discounted, as it represents the initial investment for commercial-scale installations at day zero. All future cash flows, profits and costs are compared to this initial investment. We also included the 30% Solar Investment Tax Credit in the Installation for commercial-scale arrays96. The system bounds of this impact analysis were installation through the operational or product-use phase. We, therefore, did not assume removal expenses or altered property value (terminal value) to remove uncertainty in decision making at the end of the 25-year array lifespan.

Historically reported and modelled O&M values (pre-2020) range from US$0 kWp–1 yr–1 (best case) to US$40 kWp–1 yr–1 (worst case) with an average (baseline) of US$18 kWp–1 yr–1 (refs. 97,98). Projected O&M costs were based on modelled commercial-scale PV lifetime O&M cost to capital expenditure cost ratios from historical and industry data that provided scenarios varying on research and development differences (conservative, moderate, advanced). The annual reported values are provided from 2020 to 2050 for fixed O&M costs including: asset management, insurance products, site security, cleaning, vegetation removal and component failure and are detailed in the Annual Technology Baseline report by NREL97, which are largely derived from the annual NREL Solar PV Cost Benchmark reports.

Farm operation costs

Business-as-usual farm operation costs (Operation) were derived from the ‘Total Operating Costs Per Acre to Produce’ reported in UC Davis Agricultural and Resource Economics Cost and Return Studies99. We removed operational costs to ‘Irrigate’ from the total because we estimate that as a function of electricity requirements and water rights (described in ‘Change in irrigation water use and cost savings’) while retaining ‘Irrigation Labour’ as this was not included in our irrigation cost assessment. Best- and worst-case scenarios for farm operation costs coincided with yield scenarios described in ‘Displaced crop and food production’.

Discounted cash flow for agrisolar co-location

For each commercial-scale array in the CCV, we computed the annual real cash flow as:

(9)

and for each utility-scale array as:

(10)

where Commercial is the real return in 2018 US$ for commercial-arrays (<1 MWp) and Utility is the real return in 2018 US$ for utility-scale arrays (≥1 MWp). Each of the terms on the right-hand side of these equations are defined in the sections above.

We then computed real annual discounted cash flow () for each array to estimate the total lifetime value of each array. The  at any given year n is calculated for each array by:

(11)

where  is the real annual cash flow at year n (either Commercial or Utility as relevant for each array) and  is the real discount rate without an expected rate of inflation (i) from the nominal discount rate () calculated using the Fisher equation100:

(12)

Vartiainen et al.101 clearly communicates this method in solar PV economic studies and discusses the importance of discount rate (in their case, weighted average cost of capital) selection. For i, we use 3%, which is roughly the average producer price index (PPI) and consumer price index (CPI) (3.4% and 2.4%, respectively) between 2000 and 2022 and comparable to other solar PV economic studies101,102. We use a 5% 103 and perform a sensitivity analysis using 3%, 7% and 10%  and discuss discount rates used in literature in Supplementary Discussion. Separately from the sensitivity analysis for , we also calculated our best-case and worst-case scenarios for each array.

All prices were adjusted to 2018 US dollars for calculation of real cash flow terms in equations (11) and (9). We adjusted consumer electricity prices and installation costs for inflation to real 2018 US$ using the US Bureau of Labor Statistics Consumer Price Index for All Urban Customers104. We adjusted all production-based profits and costs (all other resources) using US Bureau of Labor Statistics Producer Price Index for All Commodities105.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

The datasets and outputs generated in the current study are publicly available via Zenodo at https://doi.org/10.5281/zenodo.10023293 (ref. 106) with all source data referenced in the published article and in its Supplementary Information files.

Code availability

The code used to generate and analyse the datasets reported here are hosted via GitHub at https://github.com/stidjaco/FEWLS_tool and are available via Zenodo at https://doi.org/10.5281/zenodo.10023281 (ref. 107).

References

  1. Ardani, K. et al. Solar Futures Study (US DOE, 2021); https://www.energy.gov/sites/default/files/2021-09/Solar%20Futures%20Study.pdf
  2. Adeh, E. H., Good, S. P., Calaf, M. & Higgins, C. W. Solar PV power potential is greatest over croplands. Sci Rep. 9, 11442 (2019).Article Google Scholar 
  3. Hernandez, R. R., Hoffacker, M. K., Murphy-Mariscal, M. L., Wu, G. C. & Allen, M. F. Solar energy development impacts on land cover change and protected areas. Proc. Natl Acad. Sci. USA 112, 13579–13584 (2015).Article CAS Google Scholar 
  4. Kruitwagen, L. et al. A global inventory of photovoltaic solar energy generating units. Nature 598, 604–611 (2021).Article CAS Google Scholar 
  5. Stid, J. T. et al. Solar array placement, electricity generation, and cropland displacement across California’s Central Valley. Sci. Total Environ. 835, 155240 (2022).Article CAS Google Scholar 
  6. USDA Land Values 2022 Summary (NASS, 2022).
  7. Sturchio, M. A. & Knapp, A. K. Ecovoltaic principles for a more sustainable, ecologically informed solar energy future. Nat. Ecol. Evol. 7, 1746–1749 (2023).Article Google Scholar 
  8. Hernandez, R. R. et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustainability 2, 560–568 (2019).Article Google Scholar 
  9. Agrisolar Best Practice Guidelines Version 2 (SolarPower Europe, 2023).
  10. AgriPhotovoltaic Systems–Requirements for Primary Agricultural Use (Deutsches Institut für Normung, 2021).
  11. Macknick, J. et al. The 5 Cs of Agrivoltaic Success Factors in the United States: Lessons From the InSPIRE Research Study (NREL, 2022).
  12. Barron-Gafford, G. A. et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustainability 2, 848–855 (2019).Article Google Scholar 
  13. Choi, C. S. et al. Environmental co‐benefits of maintaining native vegetation with solar photovoltaic infrastructure. Earth’s Future 11, e2023EF003542 (2023).Article Google Scholar 
  14. Gomez-Casanovas, N. et al. Knowns, uncertainties, and challenges in agrivoltaics to sustainably intensify energy and food production. Cell Rep. Phys. Sci. 4, 101518 (2023).Article Google Scholar 
  15. Pascaris, A. S., Schelly, C., Rouleau, M. & Pearce, J. M. Do agrivoltaics improve public support for solar? A survey on perceptions, preferences, and priorities. Green Technol. Resilience Sustainability 2, 8 (2022).
  16. McCall, J., Macdonald, J., Burton, R. & Macknick, J. Vegetation management cost and maintenance implications of different ground covers at utility-scale solar sites. Sustainability 15, 5895 (2023).Article Google Scholar 
  17. Biggs, N. B. et al. Landowner decisions regarding utility-scale solar energy on working lands: a qualitative case study in California. Environ. Res. Commun. 4, 055010 (2022).Article Google Scholar 
  18. Bao, K., Thrän, D. & Schröter, B. Land resource allocation between biomass and ground-mounted PV under consideration of the food–water–energy nexus framework at regional scale. Renewable Energy 203, 323–333 (2023).Article Google Scholar 
  19. Fujita, K. S. et al. Georectified polygon database of ground-mounted large-scale solar photovoltaic sites in the United States. Sci. Data 10, 760 (2023).Article Google Scholar 
  20. Knapp, A. K. & Sturchio, M. A. Ecovoltaics in an increasingly water-limited world: an ecological perspective. One Earth 7, 1705–1712 (2024).Article Google Scholar 
  21. Picker, M., Florio, M. P., Sandoval, C. J. K., Peterman, C. J. & Randolph, L. M. Decision Adopting Successor to Net Energy Metering Tariff (California Public Utilities Commission, 2016).
  22. USDA National Agricultural Statistics Service Cropland Data Layer (USDA, 2023); https://nassgeodata.gmu.edu/CropScape/
  23. Medellín-Azuara, J., Howitt, R. E., MacEwan, D. J. & Lund, J. R. Economic impacts of climate-related changes to California agriculture. Climatic Change 109, 387–405 (2011).Article Google Scholar 
  24. Gebremichael, M., Krishnamurthy, P. K., Ghebremichael, L. T. & Alam, S. What drives crop land use change during multi-year droughts in California’s Central Valley? Prices or concern for water? Remote Sens. 13, 650 (2021).Article Google Scholar 
  25. Heller, M. C., Keoleian, G. A. & Willett, W. C. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review. Environ. Sci. Technol. 47, 12632–12647 (2013).Article CAS Google Scholar 
  26. Ross, K. & Honig, M. California State Fact Sheet (USDA Farm Service Agency, 2011).
  27. Lobell, D. B., Field, C. B., Cahill, K. N. & Bonfils, C. Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric. For. Meteorol. 141, 208–218 (2006).Article Google Scholar 
  28. Alam, S., Gebremichael, M. & Li, R. Remote sensing-based assessment of the crop, energy and water nexus in the Central Valley, California. Remote Sens. 11, 1701 (2019).Article Google Scholar 
  29. Wise, M., Dooley, J., Luckow, P., Calvin, K. & Kyle, P. Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century. Appl. Energy 114, 763–773 (2014).Article CAS Google Scholar 
  30. Gilbert, C. L. How to understand high food prices. J. Agric. Econ. 61, 398–425 (2010).Article Google Scholar 
  31. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).Article CAS Google Scholar 
  32. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).Article CAS Google Scholar 
  33. Godfray, H. C. J., Poore, J. & Ritchie, H. Opportunities to produce food from substantially less land. BMC Biol. 22, 138 (2024).Article Google Scholar 
  34. Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).Article CAS Google Scholar 
  35. Ritchie, H. & Roser, M. Land Use (Our World in Data, 2013); http://ourworldindata.org/land-use
  36. Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908 (2018).Article Google Scholar 
  37. Prăvălie, R. et al. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 194, 110697 (2021).Article Google Scholar 
  38. Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).Article CAS Google Scholar 
  39. Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustainability 1, 51–58 (2018).Article Google Scholar 
  40. He, X. et al. Solar and wind energy enhances drought resilience and groundwater sustainability. Nat. Commun. 10, 4893 (2019).Article Google Scholar 
  41. Shirkey, G. et al. An environmental and societal analysis of the US electrical energy industry based on the water–energy Nexus. Energies 14, 2633 (2021).Article CAS Google Scholar 
  42. Sturchio, M. A., Kannenberg, S. A., Pinkowitz, T. A. & Knapp, A. K. Solar arrays create novel environments that uniquely alter plant responses. Plants People Planet 6, 1522–1533 (2024).Article Google Scholar 
  43. Yavari Bajehbaj, R., Cibin, R., Duncan, J. M. & McPhillips, L. E. Quantifying soil moisture and evapotranspiration heterogeneity within a solar farm: implications for stormwater management. J. Hydrol. 638, 131474 (2024).Article Google Scholar 
  44. Lark, T. J., Mueller, R. M., Johnson, D. M. & Gibbs, H. K. Measuring land-use and land-cover change using the US. Department of Agriculture’s cropland data layer: cautions and recommendations. Int. J. Appl. Earth Obs. Geoinf. 62, 224–235 (2017).Google Scholar 
  45. Medellín-Azuara, J. et al. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California’s Central Valley, USA. Hydrol. J. 23, 1205–1216 (2015).Google Scholar 
  46. Skinner, N. Budget Act of 2021 SB 170 (California Assembly, 2021).
  47. Medellín-Azuara, J. et al. Economic Impacts of the 2021 Drought on California Agriculture Preliminary Report Prepared for The California Department of Food and Agriculture (UC Merced, 2022); http://drought.ucmerced.edu
  48. California Water Code § 10729 (State of California, 2015).
  49. Wolk, L. Local Government: Solar-Use Easement SB-618 (State of California, 2011).
  50. Committee on Governance and Finance. Local Government Omnibus Act of 2022 SB-1489 (State of California, 2022).
  51. Ayres, A. et al. Solar Energy and Groundwater in the San Joaquin Valley (Public Policy Institute of California, 2022); http://www.ppic.org/?show-pdf=true&docraptor=true&url=https%3A%2F%2Fwww.ppic.org%2Fpublication%2Fsolar-energy-and-groundwater-in-the-san-joaquin-valley%2F
  52. Laws, N. D., Epps, B. P., Peterson, S. O., Laser, M. S. & Wanjiru, G. K. On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage. Appl. Energy 185, 627–641 (2017).Article Google Scholar 
  53. Cooke, M. Decision Addressing Remaining Proceeding Issues (California Public Utilities Commission, 2023).
  54. Barbose, G. One Year In: Tracking the Impacts of NEM 3.0 on California’s Residential Solar Market (Lawrence Berkeley National Laboratory, 2024); https://escholarship.org/uc/item/4st8v7j0
  55. Bigelow, D. US Farmland Ownership, Tenure, and Transfer (USDA Economic Research Service, 2016).
  56. Baldwin, T. & Grassley, C. Protecting Future Farmland Act of 2023 S.2931 (US Senate, 2023).
  57. Kruitwagen, L. et al. A global inventory of solar photovoltaic generating units—dataset. Zenodo https://doi.org/10.5281/zenodo.5005868 (2021).
  58. Stid, J. T. et al. Spatiotemporally characterized ground-mounted solar PV arrays within California’s Central Valley. Figshare https://doi.org/10.6084/m9.figshare.23629326.v1 (2023).
  59. Faunt, C. C. Alluvial boundary of California’s Central Valley. US Geological Survey https://doi.org/10.5066/P9CQNCA9 (2012).
  60. Heris, M. P., Foks, N., Bagstad, K. & Troy, A. A National Dataset of Rasterized Building Footprints for the U.S. (USGS, 2020); https://doi.org/10.5066/P9J2Y1WG
  61. Martín-Chivelet, N. Photovoltaic potential and land-use estimation methodology. Energy https://doi.org/10.1016/j.energy.2015.10.108 (2016).Article Google Scholar 
  62. Barbose, G., Darghouth, N., O’shaughnessy, E. & Forrester, S. Tracking the Sun Pricing and Design Trends for Distributed Photovoltaic Systems in the United States (Lawrence Berkeley National Laboratory, 2022); http://emp.lbl.gov/publications/tracking-sun-pricing-and-design-1
  63. Perea, H. Electricity: Natural Gas: Rates: Net Energy Metering: California Renewables Portfolio Standard Program AB-327 (State of California, 2013).
  64. Federal Energy Management Program 10 CFR (US DOE, 2017).
  65. Best Practices for Operation and Maintenance of Photovoltaic and Energy Storage Systems 3rd edn (NREL, 2018); http://www.nrel.gov/docs/fy19osti/73822.pdf
  66. USDA. FoodData Central (Agriculture Research Service, 2019).
  67. Crop Production (USDA, 2022).
  68. Agricultural Prices (USDA, 2019); http://usda.library.cornell.edu/concern/publications/c821gj76b?locale=en
  69. Ringler, C., Bhaduri, A. & Lawford, R. The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency? Curr. Opin. Environ. Sustainability 5, 617–624 (2013).Article Google Scholar 
  70. Xie, Y., Gibbs, H. K. & Lark, T. J. Landsat-based irrigation fataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997-2017. Earth Syst. Sci. Data 13, 5689–5710 (2021).Article Google Scholar 
  71. Xie, Y. & Lark, T. J. LANID-US: Landsat-based irrigation dataset for the United States. Zenodo https://doi.org/10.5281/zenodo.5548555 (2021).
  72. Farm and Ranch Irrigation Survey (2013). (USDA, 2013); http://agcensus.library.cornell.edu/wp-content/uploads/2012-Farm-and-Ranch-Irrigation-Survey-fris13.pdf
  73. Irrigation and Water Management SurveyUSDA NASS 2018 Irrigation and Water Management Survey (2017 Census of Agriculture) (USDA, 2018); http://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Farm_and_Ranch_Irrigation_Survey/fris.pdf
  74. USGS Water Use Data for California (USGS, 2015).
  75. Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article Google Scholar 
  76. Medellín-Azuara, J., Harou, J. J. & Howitt, R. E. Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation. Sci. Total Environ. 408, 5639–5648 (2010).Article Google Scholar 
  77. McCarthy, B. M. Energy Trends in Irrigation: A Method for Estimating Local and Large-Scale Energy Use in Agriculture (Michigan State Univ., 2021).
  78. Baldocchi, D. D. The cost of irrigation water and urban farming. Berkeley News (2018).
  79. Klise, G. T. et al. Water Use and Supply Concerns for Utility-Scale Solar Projects in the Southwestern United States (Sandia National Laboratories, 2013); http://www.osti.gov/servlets/purl/1090206
  80. Holmgren, W. F., Hansen, C. W. & Mikofski, M. A. pvlib python: a python package for modeling solar energy systems. J. Open Source Software 3, 884 (2018).Article Google Scholar 
  81. Sengupta, M. et al. The National Solar Radiation Data Base (NSRDB). Renewable Sustainable Energy Rev. 89, 51–60 (2018).Article Google Scholar 
  82. California Department of Water Resources. i08 GroundwaterDepthSeasonal contours. California Natural Resources Agency Open Data Platform (2022); https://data.ca.gov/dataset/i08-groundwaterdepthseasonal-contours
  83. Pacific Gas and Electric. Electric rates: current and historic electric rates. (PG&E, accessed 6 July 2023); https://www.pge.com/tariffs/en/rate-information/electric-rates.html
  84. Sacramento Municipal Utility District. CEO & GM report on rates and services. (SMUD, accessed 6 July 2023); https://www.smud.org/Corporate/About-us/Company-Information/Reports-and-Statements/GM-Reports-on-Rates-and-Services
  85. Southern California Edison. Historical Prices and Rate Schedules. (SCE, accessed 6 July 2023); https://www.sce.com/regulatory/tariff-books/historical-rates
  86. Zimny-Schmitt, D. & Huggins, J. Utility Rate Database (URDB). OpenEI https://data.openei.org/submissions/5 (2020).
  87. Ratemaking, Solar Value and Solar Net Energy Metering—A Primer (SEPA, 2015); https://www.energy.gov/sites/prod/files/2015/03/f20/sepa-nem-report-0713-print.pdf
  88. Gong, A., Brown, C. & Adeyemo, S. The Financial Impact of California’s Net Energy Metering 2.0 Policy (Aurora Solar, 2017); https://www.ourenergypolicy.org/wp-content/uploads/2017/07/Aurora_NEM2_Whitepaper_v1.01__1_.pdf
  89. Olsen, D., Sohn, M., Piette, M. A. & Kiliccote, S. Demand Response Availability Profiles for California in the Year 2020 (Lawrence Berkeley National Laboratory, 2014); http://www.osti.gov/servlets/purl/1341727/
  90. 2007 Census of Agriculture (USDA NASS, 2009); https://agcensus.library.cornell.edu/wp-content/uploads/2007-United_States-State-usv1.pdf
  91. 2012 Census of Agriculture (USDA NASS, 2014); https://agcensus.library.cornell.edu/wp-content/uploads/usv1.pdf
  92. 2017 Census of Agriculture (USDA NASS, 2019); http://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf
  93. Annual Energy Outlook 2020 with Projections to 2050 (EIA. 2020).
  94. Lease Rates for Solar Farms: How Valuable Is My Land? SolarLandLease https://www.solarlandlease.com/lease-rates-for-solar-farms-how-valuable-is-my-land (2020).
  95. Van Trump, K. What You Need to Know… Big Money Leasing Farmland to Solar Operators. The Van Trump Report https://www.vantrumpreport.com/what-you-need-to-know-big-money-leasing-farmland-to-solar-operators/ (2020).
  96. Energy Policy Act of 2005 (US Congress, 2005).
  97. 2022 Annual Technology Baseline (NREL, 2022).
  98. Ramasamy, V., Feldman, D., Desai, J. & Margolis, R. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks: Q1 2021 (NREL, 2021); http://www.nrel.gov/docs/fy22osti/80694.pdf
  99. Current Cost and Return Studies: Commodities (UC Davis, 2022).
  100. Fisher, I. Appreciation and Interest (AEA Publication, 1896).
  101. Vartiainen, E., Masson, G., Breyer, C., Moser, D. & Román Medina, E. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility‐scale PV levelized cost of electricity. Prog. Photovoltaics 28, 439–453 (2020).Article Google Scholar 
  102. Liu, X., O’Rear, E. G., Tyner, W. E. & Pekny, J. F. Purchasing vs. leasing: a benefit–cost analysis of residential solar PV panel use in California. Renewable Energy 66, 770–774 (2014).Article Google Scholar 
  103. Kelley, L. C., Gilbertson, E., Sheikh, A., Eppinger, S. D. & Dubowsky, S. On the feasibility of solar-powered irrigation. Renewable Sustainable Energy Rev. 14, 2669–2682 (2010).Article Google Scholar 
  104. Consumer Price Index (CPI) Databases (US BLS, 2023).
  105. Producer Price Index (PPI) Databases (US BLS, 2023).
  106. Stid, J. T. Agrisolar food, energy, and water and economic lifecycle scenario (FEWLS) tool data. Zenodo https://doi.org/10.5281/zenodo.10023293 (2025).
  107. Stid, J. T. FEWLS tool: initial release of FEWLS tool. Zenodo https://doi.org/10.5281/zenodo.10023281 (2023).
  108. Uber Technologies Inc. H3: hexagonal hierarchical spatial indexing. GitHub https://github.com/uber/h3 (2019).
  109. Cartographic Boundary File (US Census Bureau, 2019); http://Census.gov
  110. Ong, S., Campbell, C., Denholm, P., Margolis, R. & Heath, G. Land-Use Requirements for Solar Power Plants in the United States NREL/TP-6A20-56290, 1086349 (OSTI, 2013); https://doi.org/10.2172/1086349

Download references

Acknowledgements

This work was supported by the USDA National Institute of Food and Agriculture (NIFA) INFEWS grant number 2018-67003-27406. We credit additional support from the USDA NIFA Agriculture and Food Research Initiative Competitive grant number 2021-68012-35923 and the Department of Earth and Environmental Sciences at Michigan State University. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the USDA or Michigan State University. We are grateful to B. McGill for bringing the vision of agrisolar co-location to life through her artistic conceptual depiction.

Author information

Authors and Affiliations

  1. Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USAJacob T. Stid, Anthony D. Kendall & Jeremy Rapp
  2. Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USASiddharth Shukla & Annick Anctil
  3. Department of Sustainable Earth System Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX, USADavid W. Hyndman
  4. Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USARobert P. Anex

Feeling/Following: Creative Experiments and Material Play

The Anthropocene addresses us: it compels us to re-think how we—as researchers from fields of anthropology, geography, philosophy, and the arts—carry out investigations in the world. In this essay, we propose forms of creative experiments and play as a way to follow the life of materials. Such an endeavor is part of a particular ontological commitment to new ways of knowing in the Anthropocene. This contribution is a statement of purpose for radically interdisciplinary modes of research that emerged from a series of animated conversations about creative experimentation at the Anthropocene Campus.

Modern disciplines are organized around orientations to particular spheres and zones of life. However, based on the ecologies of practices they enlist, disciplines can also be thought of as particular ways of being affected. If, following Brian Massumi, we accept that affect is as much about a capacity to be affected as it is a capacity to affect and act in return, this poses larger, global questions when considering affect as a proposition for an anthropocenic re-assembling of disciplinary boundaries. What would a reframing of discipline offer our performance of research in a planetary context, in which being affected is an urgent political and ethical condition?

The question: “What is the Anthropocene?” is still an unanswerable one. Despite the array of proposals for various “markers” for this geologic epoch—from traces of Strontium 90 to the topographical stamps of plantations—there is doubt about our capacity to adequately define this era, and its relation to planetary history. However, the Anthropocene certainly affects our practices as scholars, thinkers, and sentient beings. It forces us to reconsider our notions of time, nature, work, and the human. The demands of the Anthropocene do not operate only at the level of research presentation, but clash in the liminal realm of methods, devices, and concepts. In many ways, the Anthropocene does more than just resist our categorizations: it addresses what we mean by knowing, and enrolls us as cognizant beings in a world of multiple ontologies that exceed the human. We suggest that this blur should be taken as an opportunity: if we cannot “address the Anthropocene”—in the way that modern disciplines hoped to address objects situated in the world—we must at least explore its contours. We begin, here, by paying attention to the ways in which the Anthropocene affects us. We prioritize the ways it moves us and demands our attention; we remain open to the questions it poses to our established convictions. Here, our ambition is not to define the Anthropocene, nor to affix its boundaries as an object of research. Rather, we propose a reinvigoration of experimental, creative practices as privileged processes of knowing, and a “following” of materials that multiplies the repertoires in which we can speak about life in the Anthropocene.

Crucially, our attention to creative experiments is an endeavor to revive experimentation as an open source ecological practice, and to equate it with experience once again. The separation of experience from experiment was a project of the Enlightenment, one that sought to strip the mythology of the personal (subjective) from the rational order and canon of scientific knowledge. Here, in parallel with an emergent hegemony of rational thought, an epistemological weight was ascribed to experiment stripped of its subjective character—and thus denied its ability to respond to those experiential elements not yet quantifiable or describable by the language of logic.1. Within this movement, the “experiment” came to stand for first-order, observable, or reproducible qualia, with experience relegated to the position of secondary, internal, or subjective qualia. The experiment has come to be equated with a kind of secluded ritual space, with specific properties that circumscribe the scope of “valid” knowledge, and root it in multiple forms of violence. This violence is notably one of the methods—an obligated, unitary access to the world, brandished against all others which are doomed for elimination.2. It is also the violence of the current process of writing, in response to research calls and proposals, with its attendant need for ethical protocols, risk assessment, pre-framing of methods, well-defined objects, boundaries of fieldwork, and expected results. However, similar difficulties can also be encountered in a phenomenological approach that adopts experience as the category of establishing knowledge; this approach ignores the subtleties of difference and fails to nuance the complex ways in which people experience their environments.3. Subjective experience—while always historically and culturally situated—informs knowledge production. As such, it intersects with the realm of objective knowledge. Subjective qualia cannot be cleanly segregated from the seemingly “objective” first-order qualia.

The creative experiments compelled by the Anthropocene are not those that would codify processes and events such that they can be replicated in particular assemblages, ready to be reconstructed; as such practices risk denying us the possibility of being affected by the experiment. What we mean by experiment has a different tenor: experimentation as that which places knowledge at risk, questions what we know and how we know it, and seeks to reinstate knowledge as grounded in subjective, self-reflexive, and transforming practices. Creative experiments are careful, exploratory engagements through which we follow, act, react, record, and trace the often-messy material convergences of concept, matter, and energy in the universe.

Knowledge is in and of the world. To recognize this is to expose our knowledge to change or challenge. It is to be open to the unexpected, to accidents and coincidences, to “embrace failure,”4. and to welcome serendipity. In creative experiments, knowledge is not the result, but that which is generated along the experimental process. In the History of Modern Fact, Mary Poovey demonstrates that paying attention to the process of fact-creation allows one to critically reflect on knowledge itself.5. Knowledge is not viewed here as a discrete category, but as one that constantly intersects with its specific epistemological frames and thought traditions. Creative experiments must embrace this trait by accounting for the unfolding processes inherent to objects of research. We propose inquiries that make, assemble, grow, and curate in ways that cannot be assessed in pre-established outputs: the processes of these experiments’ unruly deployment “change[s] the end in changing the means.”6.

By beginning with the Anthropocene, and how it affects us and demands a reformulation for understanding and studying it, we find ourselves proposing “creative experiments”: a material play-cum-experimentation that attends to and follows the movements and ontologies that emerge at the level of experience. This is our opportunity to reconcile experience with experiment, to re-insert “value” into the experiential as a way of understanding and thinking about materials. Importantly, the experimental trajectory of material play is never predetermined by the “already-givens” of material science. This is not to suggest that material play blinds itself to empirical data or the mechanics of scientific experimentation; rather, these scientific givens offer up a set of conditions through which such play might emerge. Here, the endless treatise, methodologies, and theoretical data with which scientific experimentation has gifted us exist as invitations; as nominative thresholds to be tested, probed, and manipulated through a playful interaction with materials, which seek to link that empirical data with an experiential knowledge—embodied, intuited, unfolding. What is offered is the experimental possibility of bringing together first- and second-order qualia at the level of enquiry, and a re-formulation of objects and method, such that each communicates the same thing, through the condition of raw experience.

Feeling/Following

Given the difficulties that the Anthropocene poses, we propose the creative experiment as a process of discovery. At its heart lies a radical openness that makes it possible for the researcher to engage with his or her chosen object of study without being bound-up in and limited by pre-established grids of knowledge. In this section, we draw from Henri Bergson to help articulate the nuanced ways in which we, as researchers, hope to creatively experiment with the Anthropocene.

In Matter and Memory (2004), Bergson argues that a purely rational reading of material and space limits us only to the realm of what is already known. Our normative reading of material and space is subtractive: from the wealth of information, movement, and change given in and of our milieu and relations, we tend to extract only those elements of which we estimate that we can make some functional use.7. To overcome these dominant narratives—that is, to shift beyond the limits of a purely logical and linear reading of materials and milieu—requires a twist in our perceptual frames and devices, such that we are able to attend to something other.

For Bergson, the primary method of attuning and attending to this otherness was his concept of intuition, which he attempted to elevate to the level of scientific method by gifting intuition its own precise methodology.8.

Here, intuition as a method broadly asks for a process of thinking and attending which is located in the flow and rhythm of duration—that is, in the subjective experience of the passage of time. It is here, by attending to the internal rhythm of one’s own duration, that Bergson claims we are able to move outward, and seek a sympathetic resonance with the rhythm of the objects, materials, and elements surrounding us. This sympathetic durational resonance is at the heart of an intuitive understanding of matter and material. It is here, also, that we might locate a different basis for perceptual selection and reification in creative experiments and material play, guided by intuitive resonance rather than by utility or habit. Importantly, an intuitive understanding of material is underwritten by the condition of primary, sensory experience: experience as it happens, experience prior to logical codification, experience as it emerges in the passage of time. Creative experiments and material play thus require a different kind of attention, one that moves beyond the filters normatively imposed on one’s perceptual framework by the hegemonic tropes of linearity, utility, and habit. This kind of creative play both enables and requires a shift in perceptual hierarchies, such that we can attend equally to the minor and the peripheral, the occluded and the “useless,” the mutating and the fleeting. In breaking with these filters—in attending to an excluded otherness—we are able to open onto possibilities for experimentation that are guided by intuition, sensation, and experience. We are able to draw from the realm of the “unknown.”

Creative experiments, for us, are fundamentally about feeling and following materials. Embedded in this logic is our conviction that the Anthropocene obliges us to think of knowledge without the schema of traditional disciplinary frameworks: it invites us to invent different ad hoc disciplinary paths and diagrams, to multiply them, to follow new or ancient grains in the textures of thought. This, to us, is less a methodology than a procedure of discovery.

We take inspiration from what makers and artisans have always done: splitting timber, for instance, “is a question of surrendering to the wood and following where it leads.”9. As Tim Ingold argues, to describe the properties of things in a processual world is to describe their stories as they flow and metamorphose.10

Breaking with “methods” whose aim is to purify phenomena by isolating them from “background noise,” following is to embark on a quest through the Anthropocene in its open-ended multiplicity. To follow the opacity and obduracy of the Anthropocene, we must let it initiate its own terms of enquiry. Following anthropocenic materials will lead us into terrains where we find contradictions. Rather than trying to resolve these, creative experimentation and material play identifies the shifting contours within which the Anthropocene is made explicit.

“Following,” as an orientation for research, is also resonant with the ethos of Isabelle Stengers’ metaphor of the “solitary hunter.” According to Stengers, the solitary hunter “takes his time”; the art of the solitary hunt is “empathy.”11. The German word for “empathy”—Einfühlung— translates directly as “feeling into.” Without taking too many liberties with Stengers, we read “the art of [feeling into]” as a negotiation between the pull of the one followed, and the acuity of the one following. The task of the hunter/huntress is to suspend his or her own logic in order to be radically open to the logic of the “prey.” This meaning of feeling/ following articulates our methodological affinity for research that is as much about apprehending the trajectory of specific concepts (e.g. kinds of pain, or affective atmospheres) as it is about tracing the many impressions of these concepts in a “milieu,” or “field.” An empathic practice of “feeling into” requires a shift in the understanding of our roles as researchers, and of what is possible within these roles. To find ourselves thoroughly immersed in spaces of dense relations to carry out research—spaces that are at once concrete and enigmatic—is to trace sequences of material impressions through radically interdisciplinary landscapes.

As in Stengers’ metaphor of the hunt, following is not a static logic but an athletic one. It is not a passive engagement, but an ontological commitment to allow oneself to be affected by threads that reach far beyond one’s “home” discipline. This notion of collaboration with materials, therefore, works to reconstitute disciplinary zones, even to abolish entirely the gaps between them, instead tracing various filaments across fields of study.

1Raymond Williams, Keywords: A vocabulary of culture and society. Oxford: Oxford University Press, 1976, pp. 115‒17.

2Isabelle Stengers, “Wondering about materialism,” in: Levy Bryant et al. (eds), The Speculative Turn: Continental materialism and realism. Melbourne: re.press, 2011, pp. 368‒80.

3Robert Desjarlais, Shelter Blues. Philadelphia, PA: University of Pennsylvania Press, 1997.

4Erin Manning and Brian Massumi, Thought in the Act: Passages in the ecology of experience. Minneapolis, MN, and London: University of Minnesota Press, 2014.

5Mary Poovey, History of Modern Fact: Problems of knowledge in the sciences of wealth and society. Chicago, IL: University of Chicago Press, 1998.

6Bruno Latour, “Morality and technology: The end of the means,” Theory, Culture and Society, vol. 19, nos 5/6 (2002): pp. 247‒60, p. 252.

7Henri Bergson, Matter and Memory, tr. N. M. Paul and W. S. Palmer. New York: Dover Publications, 2004, p. 30.

8Bergson, Henri, The Creative Mind: An introduction to metaphysics, tr. M. L. Andison. New York, NY: Dover Books, 2007, p. 20; Gilles Deleuze,Bergsonism. New York, NY: Zone Books, 1991, p. 13.

9Gilles Deleuze and Félix Guattari, A Thousand Plateaus. New York, NY: Zone Books, 2004, p. 451.

10Tim Ingold, “Materials against materiality,” Archaeological Dialogues, vol. 14, no. 1 (2007): pp. 1‒16.

11Isabelle Stengers, Power and Invention: Situating Science. Minneapolis. MN: University of Minnesota Press, 1997.

Conditions of Visuality Under the Anthropocene and Images of the Anthropocene to Come

Irmgard Emmelhainz

There is no harmony in the universe. We have to get acquainted to this idea that there is no real harmony as we have conceived it.
—Werner Herzog

In the experience of deep sadness, the world itself seems altered in some way: colored by sadness, or disfigured … [This originates] in desolation, in the sense that the world is frozen and that nothing new is possible. This can lead to terrible paroxysms of destruction, attempts to shatter the carapace of reality and release the authentic self trapped within; but it can also lead away from the self altogether, towards new worldly commitments that recognize the urgent need to develop another logic of existence, another way of going on.
—Dominic Fox

The Anthropocene is the era in which man’s impact on the earth has become the single force driving change on the planet, thus giving shape to nature, shifting seas, changing the climate, and causing the disappearance of innumerable species, including placing humanity on the brink of extinction. The Anthropocene thus announces the collapse of the future through “slow fragmentation towards primitivism, perpetual crisis and planetary ecological collapse.” Instead of being conceived as speculative images of our future economic and political system, the Anthropocene has been reduced to an apocalyptic fantasy of human finitude, world finitude, and the manageable problem of climate change. In the last decade, films about the end of the world have been characterized by an apocalyptic and doomsday narrative that may end with moral redemption—from The Day After Tomorrow (2004), and 2012 (2009), to Lars von Trier’s Melancholia (2011) and World War Z (2013). In parallel, we have seen in the mass media a narrative presenting climate change as a fixable catastrophe, just like any other (such as the 2008 financial crisis, or the 2010 BP gulf oil spill). Neither our condition of finitude nor the world after the human has been imagined, and the massive environmental impact from the industrial era onward, with its long-term geomorphic implications, has become unintelligible.

This object was on display in Jean-Luc Godard’s “Voyage(s) en utopie” at the Centre Pompidou, Paris 2006. Photo: Michael Witt.

The Anthropocene has meant not a new image of the world, but rather a radical change in the conditions of visuality and the subsequent transformation of the world into images. These developments have had epistemological as well as phenomenological consequences: while images now participate in forming worlds, they have become forms of thought constituting a new kind of knowledge—one that is grounded in visual communication, and thereby dependent on perception, demanding the development of the optical mind. The radical changes in the conditions of visuality under the Anthropocene have brought a new subject position, announced by the reformulating trajectories between impressionism and cubism, and those between cubism and experimental film. While cubism culminated with the antihumanist rupture of the picture plane and converted the visual object, along with surrealism, into “manifestation,” “event,” “symptom,” and “hallucination,” experimental film introduced a mechanical, posthuman eye conveying solipsistic images at the sensorimotor level of perception. The consequence of these developments is that images, as opposed to being subject to our “beliefs,” or being objects of contemplation and beauty, came to be perceived as “the extant.” This involves a passage from representation to presentation, that is, instead of showing a perpetual present in a parallel temporality in order to make the absent partially present, the image has become sheer presence, immediacy: the here and now in real time. Made up of particles of time, wrested out of sensation and turned into cognition, the image deals more with concepts and saying than with intuition and showing.

With its break from the Renaissance point of view, cubism decomposed anthropomorphism. Based on linear perspective, Renaissance perspective had normalized a viewing position as a centered, one-eyed static entity within a mathematical, homogenous space. Creating the illusion of a view to the outside world, Renaissance perspective made the pictorial plane analogous to a window. Images constructed with traditional perspective bestow identities and subjects given a priori, configured by the point of view provided by the picture plane. Cubism, in contrast, turned space, time, and the subject upside down, redefining spatial experience by rupturing the picture plane. If classical representation conveys a continuous space, cubism invented discontinuous space by subverting the relations between subject and object, making identity and difference relative, questioning classical metaphysics. The cubist image renewed the image of the world by dissociating gaze, subject, and space, but without estranging them from each other, bringing about a new, antihumanist subject position. Moreover, with cubism, temporality—duration—and a multiplicity of points of view became embedded in the picture plane.

With North American experimental (or structural) film in the 1960s and 1970s, notably influenced by Andy Warhol’s filmic work, duration became a key component of aesthetic experience, grounded in an exploration of the filmic apparatus and seeking to make it analogous to human consciousness. By creating cinematic equivalents or metaphors of consciousness, experimental film brought about a prosthetic vision giving way to solipsistic visual experiences. A futuristic technoscape, Michael Snow’s experimental film La Région centrale (1971) is exemplary in this regard. In the film (as in all of his work), Snow explores the genetic properties of the filmic apparatus, using it to intensify and diminish aspects of normal vision. La Région centrale shows images from the wilderness collected by a machine specifically designed to shoot the film (De La). The machine was able to move in all directions, turn around 360 degrees, and zoom in and out, reaching places no human eye could perceive before. The resulting footage was independent of any human decisions and framing vision: a three-and-a-half hour topological exploration of the wilderness, a “gigantic landscape.”

Because De La extracts gravity from the situation as well as human (preconstructed or given) referential points of view, La Région hypostazises the cubist relativization of identity and difference and its rejection of a priori space. Furthermore, the film puts forth an experience of matter within, decentering the subject, which is constituted by the experience of the work itself. To paraphrase Rosalind Krauss on minimalism, the film subverts the notion of a stable structure that could mirror the viewer’s own self—a self that is completely constituted prior to experience. That is to say, the film formulates a notion of self that exists only at the moment of externality of that particular experience. By presenting every possible position of the framing-camera in relationship to itself, La Région releases the subject from its human coordinates, creating a “space without reference points where the ground and the sky, the horizontal and the vertical inter-exchange.” The references to human coordinates are the screen’s rectangular frame and the breaks made by the intermittent appearance of a big glowing yellow “X” against a black screen. Every time the X comes up, it fixes the screen and transfers the movement in a different way or direction; thus, the Xs are the point of view embodying the apprehension of the passage from chaos to form. In viewing the film, the present is experienced as immediacy, a pure phenomenological consciousness without the contamination of historical or a priori meaning; the world is thus experienced as self-sufficient, pure presence, foregrounding an awareness of the presence of the viewer’s own perceptual processes. As Snow stated:

My films are experiences: real experiences … The structure is obviously important, and one describes it because it’s more easily describable than other aspects, but the shape, with all the other elements, adds up to something which can’t be said verbally and that’s why the work is, why it exists.

In general, experimental film sought to posit alternatives to the mimetical inscription of lived experience into simulacral images (signs) by artistic neovanguardist practices that came to be embedded within the logic of spectacle—not in order to dislodge subjectivity (early modernism) or to constitute subjects by mapping out signs (postmodernism), but by exploring through film the conditions of cognition and perception. And while there is something in the image delivered by La Région that shares something with the condition of thought, it yields a solipsistic subject at the genetic level of perception; beyond auditory or optical perceptions, it delivers motor-sensory perceptions. Therefore, the machine delivers a posthuman, prosthetic enhancement of vision, inaugurating three important developments in the history of perception.

First, the machine introduces the incipient normalization of perception as augmented reality and the solipsistic visualization of data. Second, as Donna Haraway posited, the prosthetic enhancement of vision brings about the notion of limitlessness and an “unregulated gluttony” that desires to see everything from nowhere, spreading the assumption that anything can and is seen. Third, with La Région, machinic vision becomes an epistemological product of a centered human point of view (with the Xs) without stable reference points, foregrounding the conditions of contemporary visuality. While cubism embodies the antihumanist scission of the subject and the possibility of the construction of many psychical planes, La Région embodies the displacement of the human agent from the subjective center of operations. Both epitomize modernity’s fragmentation by mechanization, its alienating character, its inability to give back an image or to serve as a reflective mirror—it can never do this because the antihumanist image is indifferent to me. And yet, this was always going to be the fate of an image and of art based on contemplation. These works also attest to the fact that the foundational experience of modernity is to refuse, in advance, the “given” as a ground for thought.

In the British Channel 4 series Black Mirror, episode “The National Anthem,” the prime minister is blackmailed into raping a pig live on television.

The Transformation of Everything into Data-Images

As previously explained, the Anthropocene era implies not a new image of the world, but the transformation of the world into images. Humanity’s alteration of the biophysical systems of earth is parallel to the rapid modifications of the receptive fields of the human visual cortex announced by cubism and experimental film. This alteration is also accompanied by an unprecedented explosion in the circulation of visibilities, which are actually making the outcome of these alterations opaque. For instance, the exhaustive visualization and documentation of wildlife is actually rendering its ongoing extinction invisible. Aside from having become shields against reality, images are not only substitutes for first-hand experience, but have also become certifiers of reality, and, as Susan Sontag points out, they have extraordinary powers to determine our demands on reality. In discussing the democratization of tourism in the 1970s, Sontag further described tourists’ dependence of photographic cameras for making real their experiences abroad:

Taking photographs … is a way of certifying experience, [but] also a way of refusing it—by limiting experience to a search for the photogenic, by converting experience into an image, a souvenir … The very activity of taking pictures is soothing, and assuages general feelings of disorientation that are likely to be exacerbated by travel.

Almost forty years later, posing for, taking, sharing, liking, forwarding, and looking at images are actions that are not only integral to tourism; they actually give shape to contemporary experience. Arguably, representation has ceased to exist in plain view and manifests itself as experience, event, or the appropriation and sharing of a mediatic space. Instead of representation, we have media objects (i.e., a twitterbot) that purport to provide vague participatory representational events that ground our cultural and social experience. Thus, as Stephen Shaviro points out, in the contemporary world, the opposition between reality-based and image-based modes of presentation breaks down, and the most intense and vivid reality is precisely the reality of images.

In other words, images have in themselves become opaque cognitive and empirical experiences. Each episode of the recent British science-fiction television series Black Mirror explores the implications of this precise phenomena—of images becoming not only an intrinsic part of our empirical experience but also our cognitive experience at large. The “black mirror,” then, is nothing other than the LCD screen through which we give shape to reality.

One of the show’s early episodes, “The Entire History of You” (2011), imagines a world in which almost everyone has a “grain” implanted behind their ear. This grain has the capacity to transform human eyes into cameras that record reality and projectors that can reproduce it, thereby amalgamating lived experience, memory, and image. In a later episode, “Be Right Back” (2013), a woman is able to revive her dead partner with a program that rebuilds him—first his writing habits, then speech patterns, and eventually his very self via a cloned, synthetic body—solely from the proliferation of information he uploaded on the internet when he was alive. The deathless and bodiless information, images, and signs—the inert map of a life—becomes embodied by an avatar that exists in actual, not virtual, reality, and that has the (albeit limited) capacity to exist and interact directly with humans. In the episode, the fabrication of subjectivity from data—which implies the automatization of subjectivity—foreshadows the relationship between determinist automatisms and cognitive activity, which, according to Franco Berardi, is the core goal of the Google Empire: to capture user attention and to translate our cognitive acts into automatic sequences. The consequence is the replacement of cognition by a chain of automated connections, seeking to automatize the subjectivities of users.

Aside from the fact that images and data are taking the place of or giving form to experience, automating our will and thought, they are also transforming things into signs by welding together image and discourse, bringing about a tautological form of vision. With the widespread use of photography and digital imaging, all signs begin to lead to other signs, prompted by the desire to see and to know, to document and to archive information. Thus the fantasy that everything is or can be made visible coexists with the increasing automation of cognition, which, following Franco Berardi, is the basic condition of semiocapital (the valorization and accumulation of signs as economic assets).

In the pilot episode of Black Mirror, “The National Anthem” (2011), an alleged terrorist group kidnaps a nationally beloved British princess in the early morning hours. In order to free her, the anonymous group demands that the prime minister have sex on live television with a pig at four o’clock that same afternoon. The video in which the princess announces the “price” of the ransom goes viral and the whole nation pressures the prime minister to fulfill the kidnappers’ demands. At the end of the episode, postcoitus, it is revealed that the kidnapping was a singular artist’s gesture, intended in its successful implementation to point critically to the obscenely inflated role the media has in shaping public opinion and official policy. The artist’s action, in other words, illuminates the highly visceral shift in power brought on almost instantaneously by the ransom video’s circulation in the infosphere. Insofar as the episode unfolds montages of the whole nation glued to televisions in the pub, workplace, and waiting room at four o’clock, the artist highlights how connective interfaces actually govern, as they have the direct capacity to manipulate and coordinate behavior on almost every level.

Under the conditions of semiocapitalism, images and signs acquire value and/or power by means of being seen, largely through “likes” and retweets. The fact that sign-value has supplanted exchange-value means moreover that we no longer consume material things, but rather swallow cognitive signs embedded in and around them. Aside from consuming “experiences” or “moods,” we buy immaterial commodities (in the name of lifestyle and branding) and consume signs for “equality,” “happiness,” “wellness,” and “fulfillment.” In Don Delillo’s White Noise (1985), Jack Gladney describes a trip to the supermarket and makes clear how the signs found in the brands and labels of products that he and his wife buy have the power to relieve them of the mysteries and anxieties brought about by everyday life:

It seemed to me that Babette and I, in the mass and variety of our purchases, in the sheer plenitude those crowded bags suggested, the weight and size and number, the familiar package designs and vivid lettering, the giant sizes, the family bargain packs with Day-Glo sale stickers, in the sense of replenishment we felt, the sense of well-being, the security and contentment these products brought to some snug home in our souls—it seemed we had achieved a fullness of being that is not known to people who need less, expect less, who plan their lives around lonely walks in the evening.

What becomes evident in this paragraph is Baudrillard’s assertion that objects are no longer commodities whose message and meaning we can appropriate and decipher, but rather, tests that interrogate us. For him, commodities are a referendum, the verification of a code, circularity as well as sameness and homogeneity: here the commodities bring a well-being that reflects the well-being of the consumer and his or her lifestyle. Furthermore, the acceleration in proliferation of cognitive signs since the time of Delillo’s novel is another of the features of communicative capitalism’s subjugation, submitting the mind to an ever-increasing pace of perceptual stimuli, and in so doing generating not only panic and anxiety, but also destroying all possible forms of autonomous subjectivation. Under communicative capitalism, images transformed into signs embody the current concatenation of knowledge and machines—that is, the technological organization of capitalism to produce value. With the enabling of the visualization of data by machines, images have become scientific, managerial, and military instruments of knowledge, and thus of capital and power. In this context, seeing means the accelerating perception of the fields of everyday experiences, or rather, the field of trivial visual analogies of experience: a kind of groundless, accelerated tautological vision derived from passive observation. This is for Berardi another of communicative capitalism’s forms of governance, as this kind of vision generates technolinguistic automatisms by carrying information without meaning, automating thought and the will.

An astronaut floats off in space in this film still from Cuarón’s 2014 movie Gravity.

Images as Cognition and thus Forms of Power

Images circulating in the infosphere are also charged with affect, exposing the viewer to sensations that go beyond everyday perception. Hollywood cinema, for instance, delivers pure sensation and intensities that have no meaning. In Alfonso Cuarón’s Gravity (2013), the main characters try to survive in outer space by solving practical and technical problems. The movie repudiates a point of view and a ground for vision in favor of immersion, transforming images into physical sensations mobilized by the visual and auditory (especially in its 3-D version), and thus into affect. The becoming-affect of images derives from communicative capitalism’s ruthless conversion of sensation and aesthetic experiences into cognition: its transformation of these experiences into information, sensations, and intensities without meaning is precisely what enables them to be exploited as forms of work and sold as new experiences and exciting lifestyle choices. One of the problems that arises is that affect cannot be linked to a larger network of identity and meaning. Gravity also presents itself as a symptom of the normalization of a groundless seeing brought about by modernity’s decentering of the subject parallel to our exposure to aerial images (for example, Google Earth). The hegemonic sight convention of visuality is an empowered, unstable, free-falling, and floating bird’s eye view that mirrors the present moment’s ubiquitous condition of groundlessness.

Installation view of “Voyage(s) en utopie” at the Centre Pompidou, Paris, 2006. Photo: Michael Witt.

According to many thinkers, this groundlessness characterizes the Anthropocene. The current fragmentation and transience of sociopolitical movements attests to the fact that we are first of all lacking ground on which to found politics, our social lives, and our relationship to the environment. Second, as Claire Colebrook put it, with the Anthropocene we are facing human extinction, as well as causing other extinctions, thereby annihilating that which makes us human. We are thus all thrown into a situation of urgent interconnectedness, in which a complex multiplicity of diverging forces and timelines that exceed any manageable point of view converge. In this context, criticality is both in trouble and spinning on its head. Many questions arise: How do we redefine the ground of deterritorialized subjectivation beyond the subsumption of subjectivity by the modes of governance of accelerated tautological forms of vision and communicative capitalism? How can we transform our relationship to the indeterminacy of deterritorialization and the multiplicity of diverging points of view in order to provide a heightened sense of place, giving way to the possibility of collective autonomous subjectivation and thus a new sense of politics and of the image?

In an era of ubiquitous synthetic and digital images dissociated from human vision and directly tied to power and capital, when images and aesthetic experience have been turned into cognition and thus into empty sensations or tautological truths about reality, the image of the Anthropocene is yet to come. The Anthropocene is “the age of man” that announces its own extinction. In other words, the Anthropocene thesis posits “man” as the end of its own destiny. Therefore, while the Anthropocene narrative keeps “man” at its very center, it marks the death of the posthuman and of antihumanism, because there can be no redeeming critical antihumanist or posthuman figure in which either metaphysics or technological and scientific advances would find a way to reconcile human life with ecology. In short, images of the Anthropocene are missing. Thus, it is necessary to transcend our incapacity to imagine an alternative or something better. We can first do this: draw a distinction between images and imagery, or pictures. Although it is related to the optic nerve, the picture does not make an image. In order to make images, it is necessary to make vision assassinate perception; it is necessary to ground vision, and then perform (as in artistic activity) and think vision (as in critical activity).

Jean-Luc Godard and Anne-Marie Miéville, The Old Place, 2001. Film still.

Images to Come

Following Jean-Luc Godard, who operates in his work between the registers of the real, the imaginary, and art, only cinema is capable of delivering images as opposed to imagery, conveying not a subject but the supposition of the subject and thus the verb (substance). Alterity is absolutely necessary for the image, as the image is an intensification of presence—this is why it is able to hold out against all experiences of vision. In this light,Godard’s cinematic project can be interpreted as a conception of the image as a promise of flesh. For Godard, the image is incertitude, it is “trying to see” and the possibility of “giving voices back to their bodies.” For the filmmaker, images do not show; rather, images are a matter of belief and a desire to see (which is different from the desire to know or to possess).

An essay-film Godard made with Anne-Marie Miéville, The Old Place (2001), addresses the Anthropocenic concerns of life after the extinction of man, the current groundlessness of vision, and the lack of images of the world and of humanity. While we see images from outer space, Miéville and Godard discuss “CLIO,” the archaeological bird of the future, a microsatellite sent into space in 2001. The satellite is supposed to come back to earth in five thousand years to inform its future inhabitants about the past. Aside from carrying traditional human forms of knowledge, the bird will deliver messages written by the current inhabitants of the globe addressed to its future inhabitants. Miéville and Godard ponder whether humanist messages such as “Love each other,” or “Eliminate discrimination against women,” will be included in the satellite (they doubt it). Later on, they conclude:

We are all lost in the immensity of the universe and in the depth of our own spirit. There is no way back home, there is no home. The human species has blown up and dispersed in the stars. We can neither deal with the past nor with the present, and the future takes us more and more away from the concept of home. We are not free, as we like to think, but lost.

Here Godard and Miéville paint the termination of a world, its exhaustion and estrangement from its conditions of possibility. As they underscore the lack of a home for the spirit, they highlight the loss of a sense of origin and destination, implying that the active principle of the world has ceased to function. The last line is spoken while we see the image of a mother polar bear staring at her dead cub, followed by an image of Alberto Giacometti’s sculpture L’homme qui marche (Walking Man, 1961): life persists irrationally, not given form by imagination, ceasing to cohere into a higher truth.

In The Old Place, Godard and Miéville explore the image of humanity throughout the Western history of art, underscoring the fact that for two thousand Eurocentric, Christian years, the image was sacred. We also see images of violence, torture, and death juxtaposed with beautiful sculpted and painted figures and faces created throughout all the ages of humanity: people by turns smiling, screaming, or crying.

For Godard and Miéville, the image is also something related to the origin that reveals itself as the new but that had been there all along: an originary landscape always present and inextricable from history. Marking the passage to the current regime of communicative capitalism, where images are permeated by discourse and tautological truths about reality, they state: “The image today is not what we see, but what the caption states.” This is the definition of publicity, which they further link to the transformation of art into market and marketing represented by both Andy Warhol, and by the fact that “The last Citroën will be named Picasso,” which has as a consequence that “The spaces of publicity now occupy the spaces of hope.” And yet, in spite of the ubiquity of communicative capitalism, for them there is something that resists, something that remains in art and in the image. Meanwhile, we see a blank canvas held by four mechanical legs moving furiously. This evokes the resisting image to come; this resisting image is a question of (sensible, un-automated) purity and, in post-Christian secular sense, of the sacred and redemption, of an ambivalent relationship between image and text, foreign to knowledge and intrinsically tied to belief. At the end of The Old Place, the filmmakers posit the Malay legend of A Bao A Qu as the paradigm of the image of these times in which “we are lost without a home,” as they state. “The text of A Bao A Qu is the illustration of this film.” The legend is rewritten by Jorge Luis Borges in his Book of Imaginary Beings:

To see the most lovely landscape in the world, a traveler must climb the Tower of Victory in Chitor. A winding staircase gives access to the circular terrace on top, but only those who do not believe in the legend dare climb the tower. On the stairway there has lived since the beginning of time a being sensitive to the many shades of the human soul known as A Bao A Qu. It sleeps until the approach of a traveler and some secret life within it begins to glow and its translucent body begins to stir. As the traveler climbs the stairs, the being regains consciousness and follows at the traveler’s heels, becoming more intense in bluish color and coming closer to perfection. But it achieves its ultimate form only at the topmost step, and only when the traveler is one who has already attained Nirvana, whose acts cast no shadows. Otherwise, the being hesitates at the final step and suffers at its inability to achieve perfection. As the traveler climbs back down, it tumbles back to the first step and collapses weary and shapeless, awaiting the approach of the next traveler. It is only possible to see it properly when it has climbed half the steps, as it takes a clear shape when its body stretches out in order to help itself climb up. Those who have seen it, say that it can look with all of its body and that at the touch, it reminds one of a peach’s skin. In the course of the centuries, A Bao A Qu has reached the terrace only once.

In their film, Godard and Miéville explore the imprint of the quest of what it means to be human throughout the history of images. Humanity transpires as a mark that is perpetually reinscribed in a form of an address. A Bao A Qu is an inhuman thing activated by the passage of humans wishing to see the most beautiful landscape in the world. The act of vision is a unique event, and what delivers the vision of the landscape and of the creature are the purity and desire of the viewer. A Bao A Qu is an image of alterity; it stares back with all of its body. A Bao A Qu is an antidote to the lack of imagination in our times: an inhuman vision that undermines the narrative that holds the human as the central figure of its ultimate form of vision and destruction.

In the voiceover of his most recent film, Adieu au langage (Farewell to Language, 2014), Godard quotes Rilke: “It is not the animal which is blind, but man. Blinded by consciousness, man is incapable of seeing the world.” With a strident palette and saturated sound, the film evokes abstract, fauvist, cubist, and impressionist painting, and is Godard’s most radically experimental film (as in the genre, because all his work is experimental and radical) to date. Rilke’s quote, together with an aphorism he attributes to Monet, frame Godard’s quest in this film: “It is not about seeing what we see, because we do not see anything, but [it is about] painting what we cannot see.” In parallel, Godard revives the romantic poet’s wish to “describe” immediate reality, to hit the viewer with electroshocks that make a real visible and audible world emerge from language. In the film, as a way to enable a new form of communication beyond tautological digital communication (Godard points out that with texting there is neither the chance to interpret a code nor room for ambiguity) and to reestablish harmony between the couple in the movie who can no longer communicate face to face, Roxy Miéville’s dog appears. Roxy becomes the metaphor for the possibility of an “other” post-anthropocentric language “between” humans. In the movie, the dog asks, “What is man? What is a city? What is war?” Rocky’s comings and goings between the couple bear the possibility of giving back freedom to the face-to-face encounter. Godard compare’s Roxy’s “other” language to the lost language of the poor, the excluded, animals, plants, the handicapped—those who are out of the frame. In sum, the movie is a giant mirror that reflects a grammar of thought that no longer resides in enunciation (and this is the farewell to language): marking the absence of a relationship between the characters by using Roxy—the third person, the post-anthropocentric “other”—as a vehicle of communication.

In both The Old Place and Adieu au langage, Godard addresses spectacular modernity’s (semiocapitalism’s) crisis of visuality, which causes a lack of imagination, or even blindness. He also posits alternatives: an inhuman vision beyond a humanist-centered view, a post-anthropocentric “other.” In contrast to post-humanism, the filmic camera and technology are not what enable vision in these films. Rather, vision is enabled by a mythical being (A Bao A Qu) and by Roxy the dog, which, at the end of Adieu, barks in unison with the cry of a newborn baby, announcing the new to come.

Notes

Werner Herzog, Herzog on Herzog (New York: Faber and Faber, 2003), 164.

Dominic Fox, Cold World: The Aesthetics of Dejection and the Politics of Militant Dysphoria (London: Zero Books, 2009), 1.

Nick Srnieck and Alex Williams, “#ACCELERATE MANIFESTO for an Accelerationist Politics,” May 14, 2013, par. 23 .

Stan Brakhage, “From ‘Metaphors on Vision,’” The Avant-Garde Film: A Reader of Theory and Criticism, ed. P. Adams Sitney(New York: Anthology Film Archives, 1978), 120.

Georges Didi-Huberman, “Picture = Rupture: Visual Experience, Form and Symptom According to Carl Einstein,” Papers of Surrealism 7 (2007): 5.

Ibid., 6.

Anthology Film Archives is a theater in New York where in the late sixties and early seventies filmmakers and artists (Snow amongst them) would gather to watch films. At the time, the theater had wing-like chairs that isolated the viewer sensorially in order to “equate” her field of vision to the screen, thereby delivering a solipsistic experience.

Michael Snow, The Michael Snow Project: The Collected Writings of Michael Snow (Waterloo: Wilfrid Laurier University Press, 1994), 56.

Krauss, 50.

Gilles Deleuze, Cinema I: The Movement-Image (Minneapolis: University of Minnesota Press, 1986), 84.

Snow, The Michael Snow Project, 44.

Deleuze, Cinema I, 85.

Donna Haraway, “Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective” Feminist Studies, vol. 14, no. 3 (Autumn 1988): 575–99, 582.

Didi-Huberman, “Picture = Rupture,” 9.

Melissa McMahon, “Beauty: Machinic Repetition in the Age of Art,” in A Shock to Thought: Expression After Deleuze and Guattari, ed. Brian Massumi (London: Routledge, 2002), 4.

Ibid., 8.

Rob Nixon, Slow Violence and the Environmentalism of the Poor (Cambridge, MA: Harvard University Press, 2011), 12.

Susan Sontag, On Photography (New York: Farrar, Straus and Giroux, 1977), 80.

Ibid., 177

Stephen Shaviro, “Post-Cinematic Affect: On Grace Jones, Boarding Gate and Southland Tales,” Film Philosophy 14.1 (2010): 12.

Franco “Bifo” Berardi, “The Neuroplastic Dilemma: Consciousness and Evolution,” e-flux journal 60 (Dec. 2014): pars. 21–23 .

Ibid., par. 3.

Franco “Bifo” Berardi, The Uprising: On Poetry and Finance (New York: Semiotexte, 2012), 15.

Don Delillo, White Noise (New York: Picador, 2002), 20.

Jean Baudrillard,“Toward a Critique of the Political Economy of the Sign,” trans. Carl R. Lovitt and Denise Klopsch, SubStance, vol. 5, no. 15 (1976): 111–116.

Franco “Bifo” Berardi, “Accelerationism Questioned from the Point of View of the Body” e-flux journal 46 (June 2013): par. 11 .

Benjamin Bratton,“Some Trace Effects of the Post-Anthropocene: On Accelerationist Geopolitical Aesthetics,” e-flux journal 46 (June 2013): par. 16 .

Berardi, The Uprising, 41.

Shaviro, “Post-Cinematic Affect,” par. 14.

Hito Steyerl, “In Free Fall: A Thought Experiment on Vertical Perspective,” e-flux journal 24 (April 2011): par. 6 .

Claire Colebrook and Cary Wolfe, “Dialogue on the Anthropocene,” Haus der Kulturen der Welt, Berlin, Jan. 23, 2013 .

Serge Daney, “Before and After the Image,” Revue des Études Palestiniennes 40 (Summer 1991): par. 2 .

Didi-Huberman, “Picture = Rupture,” 17.

Georges Didi-Huberman, “The Supposition of the Aura: The Now, the Then, and Modernity,” Walter Benjamin and History, ed. Andrew Benjamin (New York: Continuum, 2006), 8.

Daney, “Before and After the Image,” par. 2.

Fox, Cold World, 7.

Ibid., 70.

I have been unable to locate the author, title, date and location of this evocative mechanical sculpture.

Jorge Luis Borges, The Book of Imaginary Beings, trans. Andrew Hurley (New York: Viking, 1967), 2.

I would like to thank π who knows why and Romi Mikulinski for her feedback and comments on an earlier version of this essay, which is a chapter from Art in the Anthropocene: Encounters Among Aesthetics, Politics, Environments and Epistemologies, eds. Heather Davis and Etienne Turpin (Ann Arbor: Open Humanities Press, forthcoming 2015).

Irmgard Emmelhainz is an independent translator, writer, researcher, and lecturer based in Mexico City. Her work about film, the Palestine Question, art, cinema, culture, and neoliberalism has been translated to Italian, French, English, Arabic, Turkish, Hebrew, and Serbian and she has presented it at an array of international venues. She is member of the editorial board of Scapegoat Journal, and has recently finished a book on neoliberalism as a sensibility and common sense embedded in urban planning, work and life, culture, social movements, mourning, and women’s struggle.

Humanity’s Endgame

A new history of societal collapse by an expert in existential risk argues that our globalized society is edging toward the precipice.

Illustration by Nicolas Ortega for Noema Magazine.

Nicolas Ortega for Noema Magazine

By Henry Wismayer

Henry Wismayer is a writer based in London.

LONDON — There are 8 million artifacts in the British Museum. But to commence his tale of existential jeopardy, risk expert Luke Kemp made a beeline for just two items housed in a single room. On a visit in early fall, beyond a series of first-floor galleries displaying sarcophagi from pharaonic Egypt, we stopped beside a scatter of human bones.

The exhibit comprised two of the 64 skeletons unearthed from the sands of Jebel Sahaba, in northern Sudan, in 1964. Believed to be over 13,000 years old, the bodies in this prehistoric cemetery were significant for what they revealed about how their owners died. Of those 64 skeletons, at least 38 showed signs of violent deaths: caved-in skulls, forearm bones with parry fractures from victims staving off blows, or other injuries. Whether a result of organized warfare, intercommunal conflict or even outright massacre, Jebel Sahaba is widely considered to be some of the earliest evidence of mass violence in the archaeological record.

According to Kemp, these shattered bones were a foreshadowing of another object in this room. Ten feet away, displayed at knee-height, was the Palette of Narmer. Hewn from a tapering tablet of grey-green siltstone, the item on display was an exact cast of the 5,000-year-old original — discovered by British archaeologists in 1898 — that now sits in Cairo’s Egyptian Museum.

At the center of the stone stands the giant figure of Narmer, the first king of Egypt. His left hand clasps the head of an enemy, presumed to be a rival ruler of the Western Delta. In his raised right hand he holds a mace. The image is thought to depict Narmer bludgeoning his greatest opponent to death, an act that solidified his sovereignty over all Egypt. Beneath his feet lie the contorted bodies of two other victims, while overhead a falcon presents Narmer with a ribbon, believed to represent the god Horus bestowing a gift of the Western Nile. “Here we have perfect historical evidence of what the social contract is. It’s written in blood,” Kemp told me. “This is the first depiction of how states are made.”

In the British Museum’s repository of ancient treasures and colonial loot, the palette is by no means a star attraction. For the half hour we spent in the room, few visitors gave it more than a passing glance. But to Kemp, its imagery “is the most important artwork in the world” — a blueprint for every city-state, nation and empire that has ever been carved out by force of arms, reified in stone and subsequently turned to dust.

Systematizing Collapse

When Kemp set out seven years ago to write his book about how societies rise and fall — and why he fears that our own is headed for disaster — one biblical event provided him with the perfect allegory: the story of the Battle of the Valley of Elah, recounted in 1 Samuel 17. Fought between the Israelites and the Philistines in the 11th century BCE, it’s a tale more commonly known by the names of its protagonists, David and Goliath.

Goliath, we are told, was a Philistine warrior standing “six cubits and a span,” or around 9 feet, 9 inches, clad in the alloy of copper and tin armor that would give his epoch its name: the Bronze Age. As the rival armies faced off across the valley, the giant stepped onto the battlefield and laid down a challenge that the conflict should be resolved in single combat.

For 40 days, Goliath goaded his enemy to nominate a champion, until a shepherd named David came forward from the Israelite ranks, strung a stone into his slingshot and catapulted it into Goliath’s brow, killing him at a stroke, and taking his head with the giant’s own sword. For centuries thereafter, the story of David and Goliath has served as a parable challenging the superiority of physical might. Even the most impressive entity has hidden frailties. A colossus can be felled by a single blow.

According to Kemp’s new book, “Goliath’s Curse,” it’s a lesson we would do well to heed. Early on, he dispenses with the word “civilization,” because in his telling, there is little that might be considered civil about how states are born and sustained. Instead, he argues that “Goliath” is a more apposite metaphor for the kind of exploitative, hierarchical systems that have grown to organize human society.

“‘Goliath’ is a more apposite metaphor for the kind of exploitative, hierarchical systems that have grown to organize human society.”

Like the Philistine warrior, the Goliath state is defined by its size; in time, centralized polities would evolve to dwarf the hunter-gatherer societies that prevailed for the first 300,000 years of Homo sapiens. Ostensibly, it is well-armored and intimidating, exerting power through the threat and exercise of violence. And, in kind with the biblical colossus, it is vulnerable: Those characteristics that most project strength, like autocracy and social complexity, conceal hidden weaknesses. (A more modern allegory, Kemp writes, can be found in the early Star Wars movies, in which a moon-sized space station with the capacity to blow up a planet can be destroyed by a well-placed photon torpedo.)

Kemp is, of course, by no means the first scholar to try to chart this violence and vulnerability through the ages. The question of what causes societies to fail is arguably the ultimate mission of big-picture history, and a perennial cultural fixation. In the modern era, the historian Jared Diamond has found fame with his theories that collapse is usually a product of geographical determinism. The “Fall of Civilizations” podcast, hosted by the historian Paul Cooper, has over 220 million listens. Perusing a bookshop recently, I spotted a recent release, entitled “A Brief History of the End of the F*cking World,” among the bestsellers.

What distinguishes Kemp’s book from much of the canon is the consistencies he identifies in how different political entities evolved, and the circumstances that precipitated their fall. A panoramic synthesis of archaeology, psychology and evolutionary biology, “Goliath’s Curse” is, above all, an attempt to systematize collapse. Reviewers have hailed the book as a skeleton key to understanding societal precarity. Cooper has described it as “a masterpiece of data-driven collapsology.”

Moreover, it is a sobering insight into why our own globalized society feels like it is edging toward the precipice. That’s because, despite all the features that distinguish modern society from empires of the past, some rules hold true throughout the millennia.

Becoming ‘Dr. Doom’

In September, Kemp traveled down from Cambridge to meet me in London for the day. Given his subject, I half-expected a superannuated and eccentric individual, someone like Diamond with his trademark pilgrim-father beard and penchant for European chamber music. But Kemp, 35, would prove to be the antithesis of the anguished catastrophist. The man waiting for me on the concourse at King’s Cross was athletic, swarthily handsome and lantern-jawed. He’d signed off emails regarding our plans to meet with a puckish “Cheerio.”

Kemp’s background is also hardly stereotypical of the bookish scholar. He spent his early years in the dairy-farming town of Bega in New South Wales, Australia, where cattle outnumbered people three-to-one. It was “something of a broken home,” he told me. His father was an active member of the Hell’s Angels, involved in organized crime, a formative presence that would later germinate Kemp’s interest in power dynamics, the way violence is at once a lever for domination and for ruin.

Escaping to Canberra, after high school, Kemp read “interdisciplinary studies” at the Australian National University (ANU), where he found a mentor in the statistical climatologist Jeanette Lindsay. In 2009, it was Lindsay who persuaded him to join a student delegation heading to COP15 in Copenhagen, where Kemp found himself with a front row seat to what he calls “the paralysis of geopolitics.”

At one stage, during a symposium over measures to curb deforestation, he watched his own Australian delegation engage in endless circumlocutions to derail the debate. Representatives from wealthier countries, most notably America, had large teams that they could swap in and out of the floor, enabling them to filibuster vital, potentially existential questions to a deadlock. “If you’re from Tuvalu, you don’t have that privilege,” Kemp explained.

Afterward, Kemp became preoccupied by “a startling red thread” evident in so many spheres of international negotiation: the role of America as arbiter of, and all too often barrier to, multilateral cooperation. Kemp wrote his doctoral thesis on how pivotal issues — such as biodiversity loss, nuclear weapons and climate change — had grown captive to the whims of the world’s great superpower. Later, when he published a couple of academic articles on the same subject, “the ideas weren’t very popular,” he said. “Then Trump got elected, and suddenly the views skyrocketed.”

In 2018, Kemp relocated to the United Kingdom, landing a job as a research affiliate at Cambridge University’s “Centre for the Study of Existential Risk” (CSER, often articulated, in an inadvertent nod to a historical avatar of unalloyed power, to “Caesar”). His brother’s congratulatory present, a 3-D printed, hand-engraved mask of the Marvel character “Dr. Doom,” would prove prophetic. Years later, as Kemp began to publish his theories of societal collapse, colleagues at CSER began referring to him by the very same moniker.

“Goliath hierarchies select for assholes — or, to use Kemp’s preferred epithet, ‘dark triad’ personalities: people with high levels of psychopathy, narcissism and Machiavellianism.”

It was around this time that Kemp read “Against the Grain,” a revisionist history of nascent conurbations by James C. Scott. Kemp had always been an avid reader of history, but Scott’s thesis, which argued that the growth of centralized states “hadn’t been particularly emancipatory or even necessarily good for human wellbeing,” turned some of Kemp’s earlier assumptions about human nature on their head.

Such iconoclastic ideas — subsequently popularized in blockbuster works of non-fiction like Rutger Bregman’s “Humankind” (2019), and “The Dawn of Everything” (2021) by Graeber and Wengrove — would prompt years of research and rumination about the preconditions that enable states and empires to rise, and why they never last forever.

‘Hobbes’ Delusion’

“Goliath’s Curse” opens with a refutation of a 17th-century figure whose theories still cast a long shadow across all considerations of societal fragility. In “Leviathan” (1651), the English philosopher Thomas Hobbes proposed that the social contract was contingent on the stewardship of a central authority — a “Leviathan” designed to keep a lid on humanity’s basest instincts. Political scientists refer to this doctrine as “veneer theory.”

“Once civilization is peeled away, chaos spreads like brushfire,” Kemp surmises. “Whether it be in post-apocalyptic fiction, disaster movies or popular history books, collapse is often portrayed as a Hobbesian nightmare.”

For decades now, the predominant version of history has been beholden to this misanthropic worldview. Many of the most influential recent theories of collapse have echoed Hobbes’ grand theory with specific exemplars. Diamond has famously argued that the society on Rapa Nui, or Easter Island, unraveled due to self-inflicted ecocide before devolving into civil war. That interpretation, in which the islanders deforested the land in the service of ancestor worship, has since been held up as a species-wide admonition — evidence, as researchers John Flenley and Paul Bahn have written, that “humankind’s covetousness is boundless. Its selfishness appears to be genetically inborn.” In “The Better Angels of Our Nature” (2011), Steven Pinker estimated that 15% of Paleolithic people died of violent causes.

But Kemp was struck by a persistent “lack of empirics” undermining these hypotheses, an academic tendency to focus on a handful of “cherry-picked” and emotive case studies — often on islands, in isolated communities or atypical environments that failed to provide useful analogs for the modern world. Diamond’s theories about the demise of Rapa Nui — so often presented as a salutary cautionary tale —have since been debunked.

To further rebut such ideas, Kemp highlights a 2013 study by the anthropologists Jonathan Haas and Matthew Piscitelli of Chicago’s Field Museum. In what amounted to the most comprehensive survey of violence in prehistory, the authors analyzed almost 3,000 skeletons interred during the Paleolithic Era. Of the more than 400 sites in the survey, they identified just one instance of mass conflict: the bones of Jebel Sahaba. “The presumed universality of warfare in human history and ancestry may be satisfying to popular sentiment; however, such universality lacks empirical support,” Haas and Piscitelli wrote.

If there was any truth to the Hobbesian standpoint, the Paleolithic, with its absence of stratified social structures, should have been marked by mass panic and all-out war. Yet the hunter-gatherer period appears to have been a time of relative, if fragile, peace. Instead, conflict and mass violence seemed to be by-products of the very hierarchical organization that Hobbes and his antecedents essentialized. Cave art of armies wielding bows and swords dates only to around 10,000 years ago. “As soon as you start tugging on the threat of collapse, the entire tapestry of history unravels,” Kemp told me.

But if Hobbes was wrong about the human condition — if most people are averse to violence, if mass panic and mutual animosity are not the principal vectors of societal disintegration — what then explains the successive state failures in the historical record? Where or what, to mix metaphors, is Goliath’s Achilles’ heel?

What Fuels Goliath?

In seeking to disentangle a template of collapse from this historiography, Kemp turned to historical data, searching for traits of state emergence and disintegration shared by different polities. “When I see a pattern which needs to be explained, it becomes a fascination bordering upon obsession,” he told me.

A central pillar of his research was the Seshat Global History Databank, an open-source database incorporating more than 862 polities dating back to the early Neolithic. Named after the Egyptian goddess of wisdom, Seshat includes a range of metrics like the degree of centralization and the presence of different types of weaponry; it aggregates these to create nine “complexity characteristics” (CCs), including polity size, hierarchy, governmental framework and infrastructure.

“Wherever Goliath took hold, ‘arms races’ followed, as other status-seeking aspirants jostled for hegemony. And Goliaths were contagious.”

Using this and other sources, Kemp set out to collate his own novel dataset, this time focusing on the common features not of complexity, but of collapse. In keeping with Seshat’s old-god nomenclature, he dubbed it the “Mortality of States” index, shortened to “Moros”, after the Greek god of doom. Covering 300 states spanning the last five millennia, the resulting catalogue is, Kemp claims, “the most exhaustive list of state lifespans available today.”

To some extent, Kemp’s data told a story that has become received wisdom: As Earth thawed out from the last ice age, we entered the Holocene, a period of warmer temperatures and climatic stability. This shift laid the terrain for the first big inflection point: the advent of agriculture, which encouraged our previously itinerant species to settle in place, leading to greater population density and eventually proto-city-states. These early states rose and fell, often condemned by internal conflict, climatic shocks, disease or natural disasters. But gradually the organization of human societies trended toward higher levels of complexity, from the diffuse proto-city-states, through the birth of nations, then empires, to the globalized system of today. The violent paroxysms of the past were merely hiccups on a continuum toward increased sophistication and civility, and perhaps someday immortality. Such is the tale that is commonly framed as the arc of human progress.

But trawling through the data in more detail also revealed unexpected and recurrent patterns, leading Kemp to an early realization: states observably age. “For the first 200 years, they seem to become more vulnerable to terminating. And after 200 years, they stay at a high risk thereafter,” Kemp told me.

The other glaring commonality concerned the structure of these societies. “The common thread across all of them is not necessarily that they had writing or long-distance trade,” Kemp said. “Instead, it’s that they were organized into dominance hierarchies in which one person or one group gains hegemony through its ability to inflict violence on others.”

Kemp argues that dominance hierarchies arise due to the presence of three “Goliath fuels.” The first of these is “lootable resources,” assets that can be easily seen, stolen and stored. In this respect, the advent of agriculture was indisputably foundational. Cereal grains like wheat and rice could be taxed and stockpiled, giving rise to centralized authorities and, later, bureaucracies of the state.

The second Goliath fuel is “monopolizable weapons.” As weaponry evolved from flint to bronze, the expertise and relative scarcity of the source material required for early metallurgy meant that later weapons could be hoarded by powerful individuals or groups, giving those who controlled the supply chain a martial advantage over potential rivals.

The third criterion for Goliath evolution is “caged land,” territories with few exit options. Centralized power is predicated on barriers that hinder people from fleeing oppressive hierarchies.

In Kemp’s telling, every single political entity has grown from one of these seeds, or more commonly, a combination of all three. Bronze Age fiefdoms expanded at the tip of their metal weaponry. “Rome,” Kemp writes, “was an autocratic machine for turning grain into swords,” its vast armies sustained by crop imports from the Nile Valley, its endless military campaigns funded by the silver mines it controlled in Spain. In China, the Han dynasty circumscribed its territory with its Great Wall to the north, intended both to keep Xiongnu horseback raiders out and the citizenry in. Europe’s colonial empires were built, in Diamond’s famous summation, by “Guns, Germs and Steel.”

For millennia, the nature of forager societies kept these acquisitive impulses to some extent contained, Kemp argues. The evolutionary logic of hunting and gathering demanded cooperation and reciprocity, giving rise to “counter-dominance strategies”: teasing, shaming or exile. With the advent of Goliath polities, however, the “darker angels of our nature” were given free rein, yielding social arrangements “more like the dominance hierarchies of gorillas and chimpanzees.”

“Rather than a stepladder of progress,” Kemp writes, “this movement from civilization to Goliath is better described as evolutionary backsliding.” Moreover, Goliaths “contain the seeds of their own demise: they are cursed. This is why they have collapsed repeatedly throughout history.”

In Kemp’s narrative, our retrograde rush toward these vicious social structures has been less about consensus than the relentless ascent of the wrong sort of people. Goliath hierarchies select for assholes — or, to use Kemp’s preferred epithet, “dark triad” personalities: people with high levels of psychopathy, narcissism and Machiavellianism. Consequently, history has been shaped by pathological figures in the Narmer mold, dominance-seekers predisposed to aggression. Reinforced by exceptionalist and paranoid ideologies, these strongmen have used violence and patronage to secure their dominion, whether driven by a lust for power or to avenge a humiliation. Several of the rebellions that plagued dynastic China, Kemp points out, were spearheaded by aggrieved people who failed their civil service examinations.

“Whether societies collapsed through gradual depopulation, like Çatalhöyük, or abruptly, as with Teotihuacan’s conflagration, Kemp argues that the triggers were the same.”

Wherever Goliath took hold, “arms races” followed, as other status-seeking aspirants jostled for hegemony. And Goliaths were contagious. The growth of “one bellicose city-state” would often produce a domino effect, in which the threat of an ascendant Goliath would provoke other regional polities to turn to their own in-house authoritarian as a counterweight to the authoritarian next door.

In this way, humankind gravitated “from hunting and gathering to being hunted and gathered,” Kemp writes. Early states had little to distinguish them from “criminal gangs running protection rackets.” Many of the great men of history, who are often said to have bent society to their will, Kemp told me, are better thought of as “a rollcall of serial killers.”

The 1% View Of History

Back downstairs, on the British Museum’s ground floor, we walked into a long gallery off the central atrium containing dozens of megalithic totems from the great ages of antiquity. The giant granite bust of Rameses II sat beatific on a pediment, and visitors peered into a glass cabinet containing the Rosetta Stone. Kemp, slaloming through the crowds, murmured: “The 1% view of history made manifest.”

Along both walls of an adjacent corridor, we came upon a series of bas-reliefs from the neo-Assyrian city of Nimrud, in modern-day Iraq. Depicting scenes from the life of the Ashurnasirpal II, who ruled Nimrud in the 9th century BCE, the gypsum slabs were like an artistic expression of Kemp’s historical themes: Ashurnasirpal sitting on a throne before vassals bearing tribute; Ashurnasirpal surrounded by protective spirits; Ashurnasirpal’s army ramming the walls of an enemy city, rivals dragging themselves along the ground, backs perforated with arrows. The entire carving was overlaid with cuneiform script, transcribed onto signage below, with sporadic sentences translated into English: “great king, strong king, king of the universe. … Whose command disintegrates mountains and seas.

Across the atrium, in a low-lit room containing a bequest from the Rothschild family’s antique collection, Kemp lingered over an assortment of small wooden altarpieces, with biblical scenes and iconography carved in minuscule, intricate detail. Elite status could be projected in the imposing size of a granite statue, he said. But it could just as well be archived in the countless hours spent chiseling the Last Supper into a fragment of boxwood.

It is, of course, inevitable that our sense of history is skewed by this elite bias, Kemp explained. While quotidian objects and utensils were typically made of perishable materials, the palaces and monuments of the governing class were designed to be beautiful, awe-inspiring and durable. In the hours that we spent on the upper floors, we spied just one relic of ordinary life: a 3,000-year-old wooden yoke from Cambridgeshire.

Likewise, early writing often evolved to reinforce the “1% view of history” and formalize modes of control. The predominance of this elite narrative has produced a cultural blind spot, obscuring the brutality and oppression that has forever been the lot of those living at the base of a pyramid, both figurative and actual.

From all this aristocratic residue, Kemp sought to extract a “people’s history of collapse” — some means of inferring what it was like to live through collapse for the average person, rather than the elites immortalized in scripture and stone.

The Curse Of Inequality

If Kemp’s research revealed that historical state formation appears to follow a pattern, so, too, did the forces that inexorably led toward their demise. To illustrate how the process works, Kemp provides the example of Çatalhöyük, a proto-city that arose on the Konya Plain in south-central Turkey around 9,000 years ago, one of thousands of “tells,” mounded remnants of aborted settlements found throughout the Near East.

Excavations of the site’s oldest layers suggest that early Çatalhöyük was notable for its lack of social differentiation. Crammed together in a dense fractal of similarly sized mud-brick dwellings, the settlement in this period exhibits no remnants of fortification and no signs of warfare. Analysis of male and female skeletons has shown that both sexes ate the same diet and performed the same work, indicating a remarkable degree of gender equity.

This social arrangement, which the Stanford archaeologist Ian Hodder has described as “aggressively egalitarian,” lasted for around 1,000 years. Then, in the middle of the 7th millennium BCE, the archaeological record starts to shift. House sizes begin to diverge; evidence of communal activity declines. Later skeletal remains show more evidence of osteoarthritis, possibly betraying higher levels of workload and bodily stress. Economists have estimated that the Gini coefficient, which measures disparities in household income, doubled in the space of three centuries — “a larger jump than moving from being as equal as the Netherlands to as lopsided as Brazil,” Kemp writes. Within a few centuries, the settlement was abandoned.

“In almost every case, [societal] decline or collapse was foreshadowed by increases in the appearance of proxies of inequality.”

The fate of Çatalhöyük established a template that almost every subsequent town, city-state and empire would mirror. Its trajectory resounds throughout the historical record and across continents. Similar patterns can be discerned from the remnants of the Jenne-Jeno in Mali, the Olmecs of Mesoamerica, the Tiwanaku in Titicaca, and the Cahokia in pre-Columbian North America.

Occasionally, the archaeological record suggests a fluctuation between equality and disparity and back again. In Teotihuacan, near today’s Mexico City, the erection of the Feathered Serpent Pyramid by an emergent priestly class in around 200 CE ushered in a period of ritual bloodletting. A more egalitarian chapter followed, during which the temple was razed, and the city’s wealth was rechanneled into urban renewal. Then the old oligarchy reasserted itself, and the entire settlement, beset by elite conflict or popular rebellion, was engulfed in flames.

Whether societies collapsed through gradual depopulation, like Çatalhöyük, or abruptly, as with Teotihuacan’s conflagration, Kemp argues that the triggers were the same. As Acemoğlu and Robinson explored in “Why Nations Fail” (2012), the correlation between inequality and state failure often rests on whether its institutions are inclusive, involving democratic decision-making and redistribution, or extractive: “designed to extract incomes and wealth from one subset of society to benefit a different subset.” Time and again, the historical record shows the same pattern repeating — of status competition and resource extraction spiraling until a tipping-point, often in the shape of a rebellion, or an external shock, like a major climate shift or natural disaster, which the elites, their decision-making fatally undermined by the imperative to maintain their grip on power, fail to navigate.

In almost every case, decline or collapse was foreshadowed by increases in the appearance of proxies of inequality. A rise in the presence of large communal pots indicates an upsurge in feasting. Deviation in the size of dwellings, preserved in the excavated footprints of early conurbations, is a measure of social stratification, as wealth accumulates among the elite. Graves of that same nobility become stuffed with burial goods. Great monuments, honoring political and religious leaders or the gods who were supposed to have anointed them, proliferate. Many of the most lucrative lootable resources throughout history have been materials that connote elevated social standing, an obsession with conspicuous consumption or “wastefully using resources,” that marked a break from the hunter-gatherer principle of taking only what was needed. (Kemp wears a reminder of the human compulsion to covet beauty as much as utility, an obsidian arrowhead, on his wrist.)

All the while, these signs of burgeoning inequality have tended to be twinborn with an increasing concentration of power, and its corollary: violence. War, often instigated for no more reason than the pursuit of glory and prestige, was just “the continuation of status competition by other means,” Kemp writes. On occasion, this violence would be manifested in the ultimate waste of all: human sacrifice, a practice custom-made to demonstrate the leadership’s exceptionality — above ordinary morality.

Better Off Stateless

As Kemp dug into the data in more detail, his research substantiated another startling paradox. Societal collapse, though invariably catastrophic for elites, has often proved to be a boon for the population at large.

Here again, Kemp found that the historiography is subject to pervasive and fallacious simplifications. In his book, he repudiates the 14th-century Tuscan scholar Petrarch, who promulgated the notion that the fall of classical Rome and Greece ushered in a “dark age” of cultural atrophy and barbarism. His was a reiteration of sentiments found in many earlier examples of “lamentation literature,” left behind on engraved tablets and sheaves of papyrus, which have depicted collapse as a Gomorran hellscape. One of Kemp’s favorites is the “Admonitions of Ipuwer,” which portrays the decline of Egypt’s Old Kingdom as a time of social breakdown, civil war and cannibalism. “But it actually spends a lot more time fretting about poor people becoming richer,” he said.

In reality, Kemp contends, Petrarch’s “rise-and-fall vision of history is spectacularly wrong.” For if collapse often engulfed ancient polities “like a brushfire,” the scorched earth left behind was often surprisingly fertile. Again, osteoarcheology, the study of ancient bones, gives the lie to the idea that moments of societal disintegration always spelled misery for the population at large.

Take human height, which archaeologists often turn to as a biophysical indicator of general health. “We can look at things like did they have cavities in their teeth, did they have bone lesions,” Kemp explained. “Skeletal remains are a good indicator of how much exercise people were getting, how good their diet was, whether there was lots of disease.”

“Societal collapse, though invariably catastrophic for elites, has often proved to be a boon for the population at large.”

Prior to the rise of Rome, for example, average heights in regions that would subsequently fall under its yoke were increasing. As the empire expanded, those gains stalled. By the end of the Western Empire, people were eight centimeters shorter than they would have been if the preceding trends had continued. “The old trope of the muscle-bound Germanic barbarian is somewhat true. To an Italian soldier, they would have seemed very large,” Kemp said. People in the Mediterranean only started to get taller again following Rome’s decline. (In a striking parenthesis, Kemp points out that the average male height today remains two centimeters shorter than that of our Paleolithic forebears.)

Elsewhere, too, collapse was not necessarily synonymous with popular immiseration. The demise of the extravagant Mycenaean civilization in Greece was pursued by a cultural efflorescence, paving the way for the proto-democracy of Athens. Collapse could be emancipatory, freeing the populace from instruments of state control such as taxes and forced labor. Even the Black Death, which killed as much as half of Europe’s population in the mid-14th century, became in time an economic leveler, slashing inequality and accelerating the decline of feudalism.

It’s a pattern that can still be discerned in modern contexts. In Somalia, the decade following the fall of the Barre regime in 1991 would see almost every single indicator of quality of life improve. “Maternal mortality drops by 30%, mortality by 24%, extreme poverty by 20%,” Kemp recounted from memory. Of course, there are endless caveats. But often, “people are better off stateless.”

Invariably, however, Goliaths re-emerged, stronger and more bureaucratically sophisticated than before. Colonial empires refined systems of extraction and dominance until their tentacles covered diffuse expanses of the globe. Kemp, never shy of metaphor, calls this the “rimless wheel,” a centripetal arrangement in which the core reaps benefits at the margins’ expense.

At times, such regimes were simply continuations of existing models of extraction. In 1521, when the Spanish conquistador Hernán Cortés unseated the Aztec ruler Moctezuma II, it was merely a case of “translatio imperi” — the handing over of empire. The European imperial projects in the Americas were an unforgivable stain, Kemp said. But, more often than not, they assumed the mantle from pre-existing hierarchies.

Endgame

In the afternoon, we walked north from the British Museum over to Coal Drops Yard, formerly a Victorian entrepôt for the import and distribution of coal, now a shiny vignette of urban regeneration. The morning rain had cleared, and Granary Square was full of tourists and office workers enjoying the late summer sun. Kids stripped to their underwear and played among low fountains; people chatted at public tables beneath a matrix of linden trees. Kemp and I found an empty table and sat down to talk about how it could all fall apart.

As “Goliath’s Curse” approaches its conclusion, the book betrays a sense of impending doom about our current moment. The final section, in which Kemp applies his schema to the present day, is entitled “Endgame,” after the stage in chess where only a few moves remain.

Today, we live in what Kemp calls the “Global Goliath,” a single interconnected polity. Its lootable resources are data, fossil fuels and the synthetic fertilizers derived from petrochemicals. Centuries of arms races have yielded an arsenal of monopolizable weapons like autonomous drones and thermonuclear warheads that are “50 trillion times more powerful than a bow and arrow.” The land — sectored into national borders, monitored by a “stalker complex” of mass surveillance systems and “digital trawl-nets” — is more caged than ever.

We have reached the apotheosis of the colonial age, a time when extractive institutions and administrative reach have been so perfected that they now span the globe. However, the resulting interdependencies and fetishes for unending growth have created an ever-growing catalog of “latent risks,” or accumulated hazards yet to be realized, and “tail risks,” or outcomes with a low probability but disastrous consequences. Kemp characterizes this predicament, in which the zenith of human achievement is also our moment of peak vulnerability, as a “rungless ladder.” The higher we go, the greater the fall.

“We have reached the apotheosis of the colonial age, a time when extractive institutions and administrative reach have been so perfected that they now span the globe.”

Under a series of apocalyptic subtitles — “Mors ex Machina,” “Evolutionary Suicide,” “A Hellish Earth” — Kemp enumerates the existential threats that have come to shape the widespread intuition, now playing out in our geopolitics, that globalized society is sprinting toward disaster. After the post-Cold War decades of non-proliferation, nuclear weapons stockpiles are now growing. The architects of artificial intelligence muse about its potential to wipe out humanity while simultaneously lobbying governments to obstruct regulation. Our densifying cities have become prospective breeding grounds for doomsday diseases. Anthropogenic climate change now threatens to shatter the stability of the Holocene, warming the planet at “an order of magnitude (tenfold) faster than the heating that triggered the world’s greatest mass extinction event, the Great Permian Dying, which wiped away 80–90% of life on earth 252 million years ago,” Kemp warns.

The culprits in this unfolding tragedy are not to be found among the ranks of common people. The free market has always been predicated on the concept of Homo economicus, a notional figure governed by dispassionate self-interest. But while most people don’t embody this paradigm, we are in thrall to political structures and corporations created in that image, with Dark Triad personalities at the wheel. “The best place to find a psychopath is in prison,” Kemp told me. “The second is in the boardroom.”

Now, deep into the Global Goliath’s senescence, several of the indicators that Kemp identifies as having historically presaged collapse — egalitarian backsliding, diminishing returns on extraction, the rise of oligarchy — are flashing red. Donning his risk analyst hat, Kemp arrives at the darkest possible prognosis: The most likely destination for our globalized society is “self-termination,” self-inflicted collapse on a hitherto unprecedented scale. Goliath is more powerful than ever, but it is on a collision course with David’s stone.

Lootable Silicon

All of this seemed hard to reconcile with the atmosphere of contented civility in Granary Square on this sunny September afternoon. I proposed that an advocate for global capitalism would doubtless view our current circumstances as evidence of the Global Goliath’s collective, trickle-down bounty.

“We should be thankful for a whole bunch of things that started, by and large, in the Industrial Revolution,” Kemp said. “Vaccines, the eradication of smallpox, low infant mortality and the fact that over 80% of the population is literate. These are genuine achievements to be celebrated.”

Kemp argued that most redistribution has been a product of “stands against domination”; for example, the formation of unions, public health movements and other campaigns for social justice. Meanwhile, underlying prosperity still depends on the rimless wheel: the hub exploiting the periphery. “If we were here 150 years ago, we’d be seeing child laborers working in these courtyards,” he said, gesturing at the former coal warehouses that are now an upmarket shopping mall and that once served as a nerve center of the fossil fuel industry that built the modern age.

The same dynamics hold sway today, albeit at a further remove. Just south of us, across the Regent’s Canal, sat the London headquarters of Google, a billion-dollar glass edifice. At first glance, Kemp gave the building an enthusiastic middle finger.

Later, he explained: “The people sitting in that building are probably having a pretty good time. They have lots of ping pong tables and Huel. But the cobalt that they’re using in their microchips is still often dug up by artisanal miners in the Democratic Republic of Congo, getting paid less than a couple of dollars a day.”

Like much of the oligarchic class, the boy-gods of Silicon Valley still cleave to Hobbesian myths to justify their grip on wealth and power. Their techno-Utopian convictions, encapsulated in Bill Gates’ mantra that “innovation is the real driver of progress,” are merely a secular iteration of the divine mandates that Goliaths once used to legitimize their rule. Promises of rewards in the afterlife have been supplanted by dreams of a technological singularity and interplanetary civilization.

Another plausible eventuality, which Kemp dubs the “Silicon Goliath,” is a future in which democracy and freedom are crushed beneath the heel of advanced algorithmic systems. He is already at work on his next book about the evolution of mass surveillance, an inquiry that he told me “is in many ways even more depressing.”

Slaying Goliath

Toward the end of “Goliath’s Curse,” Kemp imagines a scenario in which the decision of whether to detonate the Trinity atomic bomb test in New Mexico in 1945 was made not by a Department of War but by a “Trinity jury,” an assembly of randomly selected members of the public.

“Now several of the indicators that Kemp identifies as having historically presaged collapse — egalitarian backsliding, diminishing returns on extraction, the rise of oligarchy — are flashing red.”

In such a counterfactual, with the Nazis defeated, Japan already inches from surrender and Manhattan Project physicists warning of a non-zero possibility that the test could ignite the whole atmosphere and exterminate all life on Earth, Kemp contends that a more inclusive decision-making process would have changed the course of history. “If you had a random selection by lottery of 100 U.S. citizens and asked them, ‘Should we detonate the bomb?’ What decision do they come to? Almost certainly ‘No,’ he told me.

As Kemp sees it, the widespread adoption of such open democracy is the only viable route to escape the endgame. These citizen juries wouldn’t be free-for-alls, where the loudest or most outrageous voice wins, but deliberative procedures that necessitate juror exposure to expert, nonpartisan context.

Such assemblies wouldn’t be enough to “slay Goliath” on their own, Kemp told me. “Corporations and states … [must] pay for the environmental and social damages they cause … to make the economy honest again.” Per capita wealth, Kemp added, should be limited to a maximum of $10 million.

I challenged Kemp that this wish-list was beginning to sound like a Rousseauvian fever-dream. But seven years immersed in the worst excesses of human folly had left him in no mood for half-measures. “I’m not an anarcho-primitivist,” he said. There was no point trying to revivify our hunter-gatherer past. “We’d need multiple planet Earths!” Kemp conceded. And yet the urgency of our current circumstances demanded a radical departure from the existing status quo, and no less a shift in mindset.

His final demotic prescription, “Don’t be a dick,” was an injunction to everyone that our collective future depends as much on moral ambition as political revolution. Otherwise, Goliath won’t be just a Bible story. It could also be our epitaph.